Using bispectral distribution as a feature for rotating machinery fault diagnosis

被引:46
作者
Jiang, Lingli [1 ]
Liu, Yilun [3 ]
Li, Xuejun [2 ]
Tang, Siwen [1 ]
机构
[1] Hunan Univ Sci & Technol, Engn Res Ctr Adv Min Equipment, Minist Educ, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipmen, Xiangtan 411201, Peoples R China
[3] Cent S Univ, Coll Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
基金
湖南省自然科学基金;
关键词
Fault diagnosis; Rotating machinery; Bispectral distribution; ROLLING ELEMENT BEARINGS; GEAR FAULTS; VIBRATION; ENTROPY;
D O I
10.1016/j.measurement.2011.03.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The vibration signals of rotating machinery present a strongly non-linear and non-Gaussian behavior, and bispectrum is well suitable to analyze this kind of signals. Due to modulation or smearing, it is hard to extract the accurate frequency-based features from the bispectrum. A bispectral distribution for machinery fault diagnosis is developed in this paper. The binary images extracted from the bispectra are taken as features to construct the target templates, then, the nearest template classifier is constructed to achieve pattern recognition and fault diagnosis. The computing speed of this method is very high because the proposed algorithm just calculates the number of "1". Finally, roller bearing and gear fault diagnosis are performed as examples, respectively, to verify the feasibility of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1284 / 1292
页数:9
相关论文
共 50 条
  • [31] Image feature extraction based on HOG and its application to fault diagnosis for rotating machinery
    Chen, Jiayu
    Zhou, Dong
    Wang, Yang
    Fu, Hongyong
    Wang, Mingfang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3403 - 3412
  • [32] Categorical Feature GAN for Imbalanced Intelligent Fault Diagnosis of Rotating Machinery
    Dai, Jun
    Wang, Jun
    Yao, Linquan
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [33] Neurofuzzy methodologies for rotating machinery fault diagnosis
    Yan, T
    Rong, CJ
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 1061 - 1063
  • [34] Intelligent Fault Diagnosis of Rotating Machinery Using Hierarchical Lempel-Ziv Complexity
    Han, Bing
    Wang, Shun
    Zhu, Qingqi
    Yang, Xiaohui
    Li, Yongbo
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [35] Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
    Li, Hongmei
    Huang, Jinying
    Yang, Xiwang
    Luo, Jia
    Zhang, Lidong
    Pang, Yu
    ENTROPY, 2020, 22 (08)
  • [36] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [37] A semi-supervised transferable LSTM with feature evaluation for fault diagnosis of rotating machinery
    Zhi Tang
    Lin Bo
    Xiaofeng Liu
    Daiping Wei
    Applied Intelligence, 2022, 52 : 1703 - 1717
  • [38] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [39] Feature and Joint Distribution Migration Alignment Method for Cross-Domain Fault Diagnosis of Rotating Machinery
    Zhang, Yazhou
    Zhao, Xiaoqiang
    Xu, Rongrong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [40] Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery
    He, Yongyong
    Huang, Jun
    Zhang, Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (04)