Inkjet-Printed Wearable Nanosystems for Self-Powered Technologies

被引:47
作者
Huang, Tao-Tse [1 ]
Wu, Wenzhuo [1 ,2 ,3 ,4 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Flex Lab, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Purdue Univ, Regenstrief Ctr Healthcare Engn, W Lafayette, IN 47907 USA
关键词
human-integrated applications; inkjet printing; nanosystems; self-powered; wearable; FLEXIBLE PIEZOELECTRIC GENERATOR; THIN-FILM TRANSISTORS; HIGH-PERFORMANCE; ENERGY-STORAGE; THERMOELECTRIC-MATERIALS; CARBON NANOTUBES; STRAIN SENSORS; GRAPHENE OXIDE; BIOFUEL CELLS; SOLID-STATE;
D O I
10.1002/admi.202000015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The scalable production of nanomaterials-based electronic components with mechanically compliable form factors not only provides interesting research topics but also ushers in exciting opportunities for wearable applications in consumer electronics, healthcare, human-machine interface, etc. Wearable nanosystems consist of components such as thin-film transistors, flexible sensors, energy harvesters, and energy storage devices. Despite the increased interests and efforts in nanotechnology-enabled wearables, reducing the manufacturing and assembly costs while improving the performance at the device and system level remains a major technological challenge. The inkjet printing process has emerged as a potential economic method for nanomanufacturing functional devices. Here, the authors review the recent advances in inkjet-printed wearable nanodevices and provide an in-depth discussion focusing on the materials, manufacturing process, integration, performance issues, and potential applications for inkjet-printed self-powered wearable devices. The authors compile a comprehensive list of the reported flexible devices with the corresponding materials employed. Finally, they discuss the challenges and opportunities associated with related topics.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Body-Integrated Self-Powered System for Wearable and Implantable Applications
    Shi, Bojing
    Liu, Zhuo
    Zheng, Qiang
    Meng, Jianping
    Ouyang, Han
    Zou, Yang
    Jiang, Dongjie
    Qu, Xuecheng
    Yu, Min
    Zhao, Luming
    Fan, Yubo
    Wang, Zhong Lin
    Li, Zhou
    ACS NANO, 2019, 13 (05) : 6017 - 6024
  • [32] Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors
    Lu, Y.
    Lou, Z.
    Jiang, K.
    Chen, D.
    Shen, G.
    MATERIALS TODAY NANO, 2019, 8
  • [33] Inkjet-Printed Filtennas with Triple Bandnotch
    Ahmad, Waqas
    Budimir, Djuradj
    Zlebic, Cedo
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 825 - 826
  • [34] Review on self-powered triboelectric textiles for wearable electronics
    Wang N.
    Gong W.
    Wang H.
    Fangzhi Xuebao/Journal of Textile Research, 2024, 45 (04): : 41 - 49
  • [35] An integrated flexible self-powered wearable respiration sensor
    Wang, Si
    Jiang, Yadong
    Tai, Huiling
    Liu, Bohao
    Duan, Zaihua
    Yuan, Zhen
    Pan, Hong
    Xie, Guangzhong
    Du, Xiaosong
    Su, Yuanjie
    NANO ENERGY, 2019, 63
  • [36] Self-powered wearable graphene fiber for information expression
    Liang, Yuan
    Zhao, Fei
    Cheng, Zhihua
    Zhou, Qinhan
    Shao, Huibo
    Jiang, Lan
    Qu, Liangti
    NANO ENERGY, 2017, 32 : 329 - 335
  • [37] Fabrication of Inkjet-printed Flexible Electrode
    Zhou Y.-C.
    Ning H.-L.
    Wang Y.-P.
    Tao R.-Q.
    Chen J.-Q.
    Wang L.
    Yao R.-H.
    Peng J.-B.
    Faguang Xuebao/Chinese Journal of Luminescence, 2019, 40 (09): : 1146 - 1158
  • [38] SELF-POWERED FLEXIBLE PIEZOELECTRET ARRAY FOR WEARABLE APPLICATIONS
    Yang, Hao
    Pinto, Rui M. R.
    Gonzalez, Pedro
    Ainla, Alar
    Faraji, Mohammadmahdi
    Vinayakumar, K. B.
    2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2023, : 744 - 747
  • [39] Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics
    Kwak, Sung Soo
    Yoon, Hong-Joon
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [40] Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices
    Yang Lei
    Cheng Tao
    Zeng Wenjin
    Lai Wenyong
    Huang Wei
    PROGRESS IN CHEMISTRY, 2015, 27 (11) : 1615 - 1627