Multi-Scale Interactive Network With Artery/Vein Discriminator for Retinal Vessel Classification

被引:12
作者
Hu, Jingfei [1 ,2 ,3 ,4 ]
Wang, Hua [1 ,2 ,3 ,4 ]
Wu, Guang [2 ]
Cao, Zhaohui [2 ]
Mou, Lei [5 ]
Zhao, Yitian [5 ]
Zhang, Jicong [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hefei Innovat Res Inst, Hefei 230012, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100083, Peoples R China
[5] Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
基金
北京市自然科学基金;
关键词
Arteries; Biomedical imaging; Veins; Blood vessels; Noise measurement; Retinal vessels; Annotations; Fundus images; multi-scale interactive; artery; vein classification; deep learning; ATHEROSCLEROSIS RISK; SEGMENTATION; SEPARATION; IMAGES;
D O I
10.1109/JBHI.2022.3165867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic classification of retinal arteries and veins plays an important role in assisting clinicians to diagnosis cardiovascular and eye-related diseases. However, due to the high degree of anatomical variation across the population, and the presence of inconsistent labels by the subjective judgment of annotators in available training data, most of existing methods generally suffer from blood vessel discontinuity and arteriovenous confusion, the artery/vein (A/V) classification task still faces great challenges. In this work, we propose a multi-scale interactive network with A/V discriminator for retinal artery and vein recognition, which can reduce the arteriovenous confusion and alleviate the disturbance of noisy label. A multi-scale interaction (MI) module is designed in encoder for realizing the cross-space multi-scale features interaction of fundus images, effectively integrate high-level and low-level context information. In particular, we also design an ingenious A/V discriminator (AVD) that utilizes the independent and shared information between arteries and veins, and combine with topology loss, to further strengthen the learning ability of model to resolve the arteriovenous confusion. In addition, we adopt a sample re-weighting (SW) strategy to effectively alleviate the disturbance from data labeling errors. The proposed model is verified on three publicly available fundus image datasets (AV-DRIVE, HRF, LES-AV) and a private dataset. We achieve the accuracy of 97.47%, 96.91%, 97.79%, and 98.18% respectively on these four datasets. Extensive experimental results demonstrate that our method achieves competitive performance compared with state-of-the-art methods for A/V classification. To address the problem of training data scarcity, we publicly release 100 fundus images with A/V annotations to promote relevant research in the community.
引用
收藏
页码:3896 / 3905
页数:10
相关论文
共 50 条
  • [31] MULTI-SCALE APPROACH FOR RETINAL VESSEL SEGMENTATION USING MEDIALNESS FUNCTION
    Moghimirad, Elahe
    Rezatofighi, Seyed Hamid
    Soltanian-Zadeh, Hamid
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 29 - 32
  • [32] TW-GAN: Topology and width aware GAN for retinal artery/vein classification
    Chen, Wenting
    Yu, Shuang
    Ma, Kai
    Ji, Wei
    Bian, Cheng
    Chu, Chunyan
    Shen, Linlin
    Zheng, Yefeng
    MEDICAL IMAGE ANALYSIS, 2022, 77
  • [33] (M)SLAe-Net: Multi-Scale Multi-Level Attention embedded Network for Retinal Vessel Segmentation
    Saini, Shreshth
    Agrawal, Geetika
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 219 - 223
  • [34] Multi-scale convolutional neural network for automated AMD classification using retinal OCT images
    Sotoudeh-Paima, Saman
    Jodeiri, Ata
    Hajizadeh, Fedra
    Soltanian-Zadeh, Hamid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [35] LMSA-Net: A lightweight multi-scale aware network for retinal vessel segmentation
    Chen, Jian
    Wan, Jiaze
    Fang, Zhenghan
    Wei, Lifang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1515 - 1530
  • [36] MULTI-SCALE MORPHOLOGICAL ANALYSIS FOR RETINAL VESSEL DETECTION IN WIDE-FIELD FLUORESCEIN ANGIOGRAPHY
    Ding, Li
    Kuriyan, Ajay
    Ramchandran, Rajeev
    Sharma, Gaurav
    2017 IEEE WESTERN NEW YORK IMAGE AND SIGNAL PROCESSING WORKSHOP (WNYISPW), 2017,
  • [37] A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection
    Zhang, Jia
    Li, Huiqi
    Nie, Qing
    Cheng, Li
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (06) : 517 - 525
  • [38] Automatic Artery/Vein Classification Using a Vessel-Constraint Network for Multicenter Fundus Images
    Hu, Jingfei
    Wang, Hua
    Cao, Zhaohui
    Wu, Guang
    Jonas, Jost B.
    Wang, Ya Xing
    Zhang, Jicong
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [39] MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation
    Zhang, Hongbin
    Zhang, Jin
    Zhong, Xuan
    Feng, Ya
    Li, Guangli
    Li, Xiong
    Lv, Jingqin
    Ji, Donghong
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [40] MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image
    Wang, Jinke
    Zhou, Lubiao
    Yuan, Zhongzheng
    Wang, Haiying
    Shi, Changfa
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6912 - 6931