共 101 条
The Human Blood Metabolome-Transcriptome Interface
被引:82
作者:
Bartel, Joerg
[1
]
Krumsiek, Jan
[1
]
Schramm, Katharina
[2
,3
]
Adamski, Jerzy
[4
,5
,6
]
Gieger, Christian
[7
]
Herder, Christian
[8
,9
]
Carstensen, Maren
[8
,9
]
Peters, Annette
[6
,10
,11
]
Rathmann, Wolfgang
[12
]
Roden, Michael
[8
,9
,13
]
Strauch, Konstantin
[14
,15
]
Suhre, Karsten
[16
,17
]
Kastenmueller, Gabi
[16
]
Prokisch, Holger
[2
,3
]
Theis, Fabian J.
[1
,18
]
机构:
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Human Genet, Neuherberg, Germany
[3] Tech Univ Munich, Inst Human Genet, Neuherberg, Germany
[4] Genome Anal Ctr Helmholtz Zentrum Munchen, Inst Expt Genet, Neuherberg, Germany
[5] Tech Univ Munich, Fac Expt Genet, Freising Weihenstephan, Germany
[6] Partner Site Munich, Dis Res DZHK eV, German Ctr Cardiovasc, Munich, Germany
[7] Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[8] Univ Dusseldorf, German Diabet Ctr, Leibniz Ctr Diabet Res, Inst Clin Diabetol, Dusseldorf, Germany
[9] Partner Site Dusseldorf, German Ctr Diabet Res DZD eV, Dusseldorf, Germany
[10] Helmholtz Zentrum Munchen, Inst Epidemiol 2, Neuherberg, Germany
[11] Partner Site Munich, German Ctr Cardiovasc Dis Res DZHK eV, Munich, Germany
[12] Univ Dusseldorf, Leibniz Ctr Diabet Res, Inst Biometr & Epidemiol, German Diabet Ctr, Dusseldorf, Germany
[13] Univ Dusseldorf, Univ Hosp Dusseldorf, Dept Endocrinol & Diabetol, Dusseldorf, Germany
[14] Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[15] Univ Munich, Inst Med Informat Biometry & Epidemiol, Chair Genet Epidemiol, Munich, Germany
[16] Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Neuherberg, Germany
[17] Qatar Fdn, Dept Physiol & Biophys, Weill Cornell Med Coll Qatar, Doha, Qatar
[18] Tech Univ Munich, Dept Math, Garching, Germany
基金:
欧洲研究理事会;
俄罗斯基础研究基金会;
关键词:
GENE-COEXPRESSION NETWORK;
CHOLESTEROL EFFLUX;
PERIPHERAL-BLOOD;
CELL-ACTIVATION;
EXPRESSION;
PATHWAY;
POPULATION;
RISK;
INTEGRATION;
KORA;
D O I:
10.1371/journal.pgen.1005274
中图分类号:
Q3 [遗传学];
学科分类号:
071007 ;
090102 ;
摘要:
Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.
引用
收藏
页数:32
相关论文