Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability

被引:14
作者
Allen, Brian D. [1 ,2 ,3 ,4 ]
Moore-Kochlacs, Caroline [1 ,2 ,3 ,4 ,5 ]
Bernstein, Jacob G. [1 ,2 ,3 ,4 ]
Kinney, Justin P. [1 ,2 ,3 ,4 ,6 ]
Scholvin, Jorg [1 ,2 ,3 ,4 ]
Senane, Luis F. [7 ,8 ]
Chronopoulos, Chris [6 ]
Lamantia, Charlie [6 ]
Kodandaramaiah, Suhasa B. [1 ,2 ,3 ,4 ,9 ]
Tegmark, Max [7 ,8 ]
Boyden, Edward S. [1 ,2 ,3 ,4 ]
机构
[1] MIT, Media Lab, Cambridge, MA 02139 USA
[2] MIT, McGovern Inst Brain Res, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, McGovern Inst Brain Res, E25-618, Cambridge, MA 02139 USA
[4] MIT, Koch Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Boston Univ, Dept Neurosci, Boston, MA 02215 USA
[6] Leaflabs LLC, Cambridge, MA USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
[8] MIT, Kavli Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[9] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
关键词
action potential; bursting; multielectrode array; patch clamp; spike sorting; INDEPENDENT COMPONENT ANALYSIS; HIGH-DENSITY; LARGE-SCALE; MICROELECTRODE ARRAY; WAVE-FORM; NEURONS; HIPPOCAMPUS; POLYTRODES; ELECTRODES; SEPARATION;
D O I
10.1152/jn.00650.2017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Much innovation is currently aimed at improving the number, density, and geometry of electrodes on extracellular multielectrode arrays for in vivo recording of neural activity in the mammalian brain. To choose a multielectrode array configuration for a given neuroscience purpose, or to reveal design principles of future multielectrode arrays, it would be useful to have a systematic way of evaluating the spike recording capability of such arrays. We describe an automated system that performs robotic patch-clamp recording of a neuron being simultaneously recorded via an extracellular multielectrode array. By recording a patch-clamp data set from a neuron while acquiring extracellular recordings from the same neuron, we can evaluate how well the extracellular multielectrode array captures the spiking information from that neuron. To demonstrate the utility of our system, we show that it can provide data from the mammalian cortex to evaluate how the spike sorting performance of a close-packed extracellular multielectrode array is affected by bursting, which alters the shape and amplitude of spikes in a train. We also introduce an algorithmic framework to help evaluate how the number of electrodes in a multielectrode array affects spike sorting, examining how adding more electrodes yields data that can be spike sorted more easily. Our automated methodology may thus help with the evaluation of new electrode designs and configurations, providing empirical guidance on the kinds of electrodes that will be optimal for different brain regions, cell types, and species, for improving the accuracy of spike sorting. NEW & NOTEWORTHY We present an automated strategy for evaluating the spike recording performance of an extracellular multielectrode array, by enabling simultaneous recording of a neuron with both such an array and with patch clamp. We use our robot and accompanying algorithms to evaluate the performance of multielectrode arrays on supporting spike sorting.
引用
收藏
页码:2182 / 2200
页数:19
相关论文
共 49 条
[1]   Cell type- and activity-dependent extracellular correlates of intracellular spiking [J].
Anastassiou, Costas A. ;
Perin, Rodrigo ;
Buzsaki, Gyoergy ;
Markram, Henry ;
Koch, Christof .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 114 (01) :608-623
[2]  
[Anonymous], 2016, NIPS P
[3]  
[Anonymous], 2009, ROC CURVES CONTINUOU
[4]   A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro [J].
Ballini, Marco ;
Mueller, Jan ;
Livi, Paolo ;
Chen, Yihui ;
Frey, Urs ;
Stettler, Alexander ;
Shadmani, Amir ;
Viswam, Vijay ;
Jones, Ian Lloyd ;
Jaeckel, David ;
Radivojevic, Milos ;
Lewandowska, Marta K. ;
Gong, Wei ;
Fiscella, Michele ;
Bakkum, Douglas J. ;
Heer, Flavio ;
Hierlemann, Andreas .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (11) :2705-2719
[5]   Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals [J].
Berenyi, Antal ;
Somogyvari, Zoltan ;
Nagy, Anett J. ;
Roux, Lisa ;
Long, John D. ;
Fujisawa, Shigeyoshi ;
Stark, Eran ;
Leonardo, Anthony ;
Harris, Timothy D. ;
Buzsaki, Gyorgy .
JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (05) :1132-1149
[6]   Polytrodes: High-density silicon electrode arrays for large-scale multiunit recording [J].
Blanche, TJ ;
Spacek, MA ;
Hetke, JF ;
Swindale, NV .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (05) :2987-3000
[7]   Large-scale recording of neuronal ensembles [J].
Buzsáki, G .
NATURE NEUROSCIENCE, 2004, 7 (05) :446-451
[8]   SYNCHRONIZED EXCITATION AND INHIBITION DRIVEN BY INTRINSICALLY BURSTING NEURONS IN NEOCORTEX [J].
CHAGNACAMITAI, Y ;
CONNORS, BW .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 62 (05) :1149-1162
[9]   A Fully Automated Approach to Spike Sorting [J].
Chung, Jason E. ;
Magland, Jeremy F. ;
Barnett, Alex H. ;
Tolosa, Vanessa M. ;
Tooker, Angela C. ;
Lee, Kye Y. ;
Shah, Kedar G. ;
Felix, Sarah H. ;
Frank, Loren M. ;
Greengard, Leslie F. .
NEURON, 2017, 95 (06) :1381-+
[10]   ELECTRO-PHYSIOLOGICAL PROPERTIES OF NEOCORTICAL NEURONS INVITRO [J].
CONNORS, BW ;
GUTNICK, MJ ;
PRINCE, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (06) :1302-1320