Global Well-Posedness and Analyticity of the Primitive Equations of Geophysics in Variable Exponent Fourier-Besov Spaces

被引:2
|
作者
Abidin, Muhammad Zainul [1 ]
Ullah, Naeem [2 ]
Omer, Omer Abdalrhman [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Islamia Coll, Dept Math, Peshawar 25000, Pakistan
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
关键词
well-posedness; primitive equations; analyticity; variable exponent Fourier-Besov spaces; NAVIER-STOKES EQUATIONS; REGULARITY;
D O I
10.3390/sym14010165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the Cauchy problem of the three-dimensional primitive equations of geophysics. By using the Littlewood-Paley decomposition theory and Fourier localization technique, we prove the global well-posedness for the Cauchy problem with the Prandtl number P=1 in variable exponent Fourier-Besov spaces for small initial data in these spaces. In addition, we prove the Gevrey class regularity of the solution. For the primitive equations of geophysics, our results can be considered as a symmetry in variable exponent Fourier-Besov spaces.
引用
收藏
页数:12
相关论文
共 50 条