Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

被引:11
作者
Chen, A. Y. [2 ,3 ]
Li, D. F. [3 ]
Zhang, J. B. [4 ]
Liu, F. [2 ]
Liu, X. R. [2 ]
Lu, J. [1 ]
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[3] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[4] Baosteel Technol Ctr, Shanghai 201900, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 29-30期
基金
中国国家自然科学基金;
关键词
Nanostructured materials; Interface structure; Crack propagation; Toughening mechanism; FRACTURE-TOUGHNESS; NANOCRYSTALLINE METALS; RESIDUAL-STRESS; DEFORMATION; INTERFACE; STRENGTH; DUCTILITY; BEHAVIOR; SUPERPLASTICITY; TEMPERATURE;
D O I
10.1016/j.msea.2011.07.063
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:8389 / 8395
页数:7
相关论文
共 41 条
[1]   Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing [J].
Adamczyk, J ;
Grajcar, A .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 162 :267-274
[2]   Nanostructures from severe plastic deformation and mechanisms of large-strain work hardening [J].
Alexandrov, IV ;
Valiev, RZ .
NANOSTRUCTURED MATERIALS, 1999, 12 (5-8) :709-712
[3]   Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction [J].
Andersons, J ;
König, M .
COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (13-14) :2139-2152
[4]   Improving fracture toughness of dental nanocomposites by interface engineering and micromechanics [J].
Chan, K. S. ;
Lee, Y.-D. ;
Nicolella, D. P. ;
Furman, B. R. ;
Wellinghoff, S. ;
Rawls, R. .
ENGINEERING FRACTURE MECHANICS, 2007, 74 (12) :1857-1871
[5]   Thermal-induced inverse γ/α′ phase transformation in surface nanocrystallization layer of 304 stainless steel [J].
Chen, A. Y. ;
Zhang, J. B. ;
Song, H. W. ;
Lu, J. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (16-17) :7462-7466
[6]   Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J].
Chen, Ai-Ying ;
Li, Dong-Feng ;
Zhang, Jun-Bao ;
Song, Hong-Wei ;
Lu, Jian .
SCRIPTA MATERIALIA, 2008, 59 (06) :579-582
[7]   Prediction of the fracture toughness of a ceramic multilayer composite - Modeling and experiments [J].
Chen, C. R. ;
Pascual, J. ;
Fischer, F. D. ;
Kolednik, O. ;
Danzer, R. .
ACTA MATERIALIA, 2007, 55 (02) :409-421
[8]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[9]   Tensile properties of a nanocrystalline 316L austenitic stainless steel [J].
Chen, XH ;
Lu, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2005, 52 (10) :1039-1044
[10]   A SIMPLE WAY TO MAKE TOUGH CERAMICS [J].
CLEGG, WJ ;
KENDALL, K ;
ALFORD, NM ;
BUTTON, TW ;
BIRCHALL, JD .
NATURE, 1990, 347 (6292) :455-457