Some extension of the Bessel-type orthogonal polynomials

被引:4
作者
Arvesú, J
Alvarez-Nodarse, R
Marcellán, F
Kwon, KH
机构
[1] Univ Carlos III Madrid, Escuela Politecn Superior, Dept Matemat, Madrid 28911, Spain
[2] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
关键词
orthogonal polynomials; Bessel polynomials; hypergeometric function; perturbed orthogonal polynomials;
D O I
10.1080/10652469808819199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the perturbation of the classical Bessel moment functional by the addition of the linear functional M(0)delta(x) + M(1)delta'(x), where M-0 and M-1 is an element of R. We give necessary and sufficient conditions in order for this functional to be a quasi-definite functional. In such a situation we analyze the corresponding sequence of monic orthogonal polynomials B-n(alpha,M0,M1)(x). In particular, a hypergeometric representation (F-4(2)) for them is obtained. Furthermore, we deduce a relation between the corresponding Jacobi matrices, as well as the asymptotic behavior of the ratio B-n(alpha,M0,M1)(x)/B-n(alpha)(x), outside of the closed contour Gamma containing the origin and the difference between the new polynomials and the classical ones, inside Gamma.
引用
收藏
页码:191 / 214
页数:24
相关论文
共 14 条
[1]  
ALVAREZNODARSE R, UNPUB SOME MODIFICAT
[2]  
ALVAREZNODARSE R, 1995, REND CIRC MAT PALE 2, V44, P315
[3]  
ALVAREZNODARSE R, UNPUB GEN JACOBIKOOR
[4]  
ALVAREZNODARSE R, 1996, APPL ANAL, V62, P349
[5]  
Belmehdi S., 1992, APPL ANAL, V46, P1, DOI [10.1080/00036819208840108, DOI 10.1080/00036819208840108]
[6]  
Grosswald E., 1978, LECT NOTES MATH, V698
[7]  
HENDRIKSEN E, 1984, P K NED AKAD A MATH, V87, P407
[8]   A NEW CLASS OF ORTHOGONAL POLYNOMIALS - THE BESSEL POLYNOMIALS [J].
KRALL, HL ;
FRINK, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (JAN) :100-115
[9]   Regular Sobolev type orthogonal polynomials: The Bessel case [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) :1431-1457
[10]   ON A CLASS OF POLYNOMIALS ORTHOGONAL WITH RESPECT TO A DISCRETE SOBOLEV INNER PRODUCT [J].
MARCELLAN, F ;
RONVEAUX, A .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (04) :451-464