VX2TEXT: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs

被引:33
作者
Lin, Xudong [1 ]
Bertasius, Gedas [2 ]
Wang, Jue [2 ]
Chang, Shih-Fu [1 ]
Parikh, Devi [2 ,3 ]
Torresani, Lorenzo [2 ,4 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Facebook AI, Menlo Pk, CA USA
[3] Georgia Tech, Atlanta, GA USA
[4] Dartmouth, Hanover, NH USA
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
ATTENTION;
D O I
10.1109/CVPR46437.2021.00693
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present VX2TEXT, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+x to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks-captioning, question answering and audio-visual scene-aware dialog.
引用
收藏
页码:7001 / 7011
页数:11
相关论文
共 58 条
[1]   Audio Visual Scene-Aware Dialog [J].
Alamri, Huda ;
Cartillier, Vincent ;
Das, Abhishek ;
Wang, Jue ;
Cherian, Anoop ;
Essa, Irfan ;
Batra, Dhruv ;
Marks, Tim K. ;
Hori, Chiori ;
Anderson, Peter ;
Lee, Stefan ;
Parikh, Devi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7550-7559
[2]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[3]   Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments [J].
Anderson, Peter ;
Wu, Qi ;
Teney, Damien ;
Bruce, Jake ;
Johnson, Mark ;
Sunderhauf, Niko ;
Reid, Ian ;
Gould, Stephen ;
van den Hengel, Anton .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3674-3683
[4]  
[Anonymous], 2018, ARXIV180600525
[5]  
[Anonymous], CVPR
[6]   VQA: Visual Question Answering [J].
Antol, Stanislaw ;
Agrawal, Aishwarya ;
Lu, Jiasen ;
Mitchell, Margaret ;
Batra, Dhruv ;
Zitnick, C. Lawrence ;
Parikh, Devi .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2425-2433
[7]  
Ba J.L., 2016, stat, VVolume 29, P3617, DOI 10.48550/arXiv.1607.06450
[8]  
Banerjee S., 2005, P ACL WORKSH INTR EX, P65
[9]  
Bengio Y., 2013, CoRR abs/1308.3432
[10]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733