Experimental validation of in situ CO2 capture with CaO during the low temperature combustion of biomass in a fluidized bed reactor

被引:17
作者
Abanades, J. C. [1 ]
Alonso, M. [1 ]
Rodriguez, N. [1 ]
机构
[1] Spanish Res Council Oviedo Spain, Inst Nacl Carbon, CSIC INCAR, Oviedo 33011, Asturias, Spain
关键词
CO2; capture; Carbonation; Calcination; Biomass combustion; Fluidized beds; HYDROGEN-PRODUCTION; SYSTEM; CARBONATION; CONVERSION; CYCLES; LIME; LOOP; COAL;
D O I
10.1016/j.ijggc.2010.01.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel concept for capturing CO2 from biomass combustion using CaO as an active solid sorbent of CO2 is discussed and experimentally tested. According to the CaO/CaCO3 equilibrium, if a fuel could be burned at a sufficiently low temperature (below 700 degrees C) it would be possible to capture CO2 "in situ" with the CaO particles at atmospheric pressure. A subsequent step involving the regeneration of CaCO3 in a calciner operating at typical conditions of oxyfired-circulating fluidized combustion would deliver the CO2 ready for purification, compression and permanent geological storage. Several series of experiments to prove this concept have been conducted in a 30 kW interconnected fluidized bed test facility at INCAR-CSIC, made up of two interconnected circulating fluidized bed reactors, one acting as biomass combustor-carbonator and the other as air-fired calciner (which is considered to yield similar sorbent properties than those of an oxyfired calciner). CO2 capture efficiencies in dynamic tests in the combustor-carbonator reactor were measured over a wide range of operating conditions, including different superficial gas velocities, solids circulation rates, excess air above stoichiometric, and biomass type (olive pits, saw dust and pellets). Biomass combustion in air is effective at temperatures even below the 700 degrees C, necessary for the effective capture of CO2 by carbonation of CaO. Overall CO2 capture efficiencies in the combustor-carbonator higher than 70% can be achieved with sufficiently high solids circulation rates of CaO and solids inventories. The application of a simple reactor model for the combined combustion and CO2 capture reactions allows an efficiency factor to be obtained from the dynamic experimental test that could be valuable for scaling up purposes. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 520
页数:9
相关论文
共 26 条
  • [1] Cost structure of a postcombustion CO2 capture system using CaO
    Abanades, J. Carlos
    Grasa, G.
    Alonso, M.
    Rodriguez, N.
    Anthony, E. J.
    Romeo, L. M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (15) : 5523 - 5527
  • [2] Conversion limits in the reaction of CO2 with lime
    Abanades, JC
    Alvarez, D
    [J]. ENERGY & FUELS, 2003, 17 (02) : 308 - 315
  • [3] Capture of CO2 from combustion gases in a fluidized bed of CaO
    Abanades, JC
    Anthony, EJ
    Lu, DY
    Salvador, C
    Alvarez, D
    [J]. AICHE JOURNAL, 2004, 50 (07) : 1614 - 1622
  • [4] Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development
    Alonso, M.
    Rodriguez, N.
    Gonzalez, B.
    Grasa, G.
    Murillo, R.
    Abanades, J. C.
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (02) : 167 - 173
  • [5] Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas
    Alonso, M.
    Rodriguez, N.
    Grasa, G.
    Abanades, J. C.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (05) : 883 - 891
  • [6] Solid looping cycles: A new technology for coal conversion
    Anthony, Edward J.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (06) : 1747 - 1754
  • [7] CALCIUM OXIDE-CARBON DIOXIDE SYSTEM IN PRESSURE RANGE 1-300 ATMOSPHERES
    BAKER, EH
    [J]. JOURNAL OF THE CHEMICAL SOCIETY, 1962, (FEB): : 464 - &
  • [8] EFFECT OF THE PRODUCT LAYER ON THE KINETICS OF THE CO2-LIME REACTION
    BHATIA, SK
    PERLMUTTER, DD
    [J]. AICHE JOURNAL, 1983, 29 (01) : 79 - 86
  • [9] CHARITOS A, 2009, P 20 INT C FLUID BED
  • [10] CHARITOS A, 2008, P 9 INT C CIRC FLUID