PALS laser-driven radiative jets for astrophysical and ICF applications

被引:0
作者
Pisarczyk, T. [1 ]
Kasperczuk, A. [1 ]
Stenz, Ch. [2 ]
Krousky, E. [3 ]
Masek, K. [3 ]
Pfeifer, M. [3 ]
Rohlena, K. [3 ]
Skala, J. [3 ]
Ullschmied, J. [4 ]
Kalal, M. [5 ]
Pisarczyk, P. [6 ]
机构
[1] Ins Plasma Phys & Laser Microfus, 23 Hery St, PL-00908 Warsaw, Poland
[2] Univ Bordeaux 1, CNRS CEA, Ctr Lasers Intenses & Applicat, Talence, France
[3] AS CR, Inst Phys, CH-18221 Prague 8, Czech Republic
[4] AS CR, Insti Plasma Phys, CH-18200 Prague 8, Czech Republic
[5] Czech Tech Univ, FNSPE, CH-11519 Prague 1, Czech Republic
[6] Warsaw Univ Technol, ICS, PL-00665 Warsaw, Poland
来源
PLASMA 2007 | 2008年 / 993卷
关键词
plasma jet; radiative cooling; shock wave; x-ray radiation; interferometry; electron density distribution;
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System - PALS) using the third harmonic beam (0.438 mu m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10(7) cm/s, the internal Mach number greater than 10 and the electron density above 10(19)cm(-3). The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.
引用
收藏
页码:315 / +
页数:2
相关论文
共 33 条
  • [1] Double-Pulse Laser-Driven Jets on OMEGA
    S. Sublett
    J. P. Knauer
    I. V. Igumenshchev
    A. Frank
    D. D. Meyerhofer
    Astrophysics and Space Science, 2007, 307 : 47 - 50
  • [2] Double-pulse laser-driven jets on OMEGA
    Sublett, S.
    Knauer, J. P.
    Igumenshchev, I. V.
    Frank, A.
    Meyerhofer, D. D.
    ASTROPHYSICS AND SPACE SCIENCE, 2007, 307 (1-3) : 47 - 50
  • [3] Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling
    Youngsoo Ha
    Carl L. Gardner
    Anne Gelb
    Chi-Wang Shu
    Journal of Scientific Computing, 2005, 24 : 29 - 44
  • [4] Numerical simulation of high Mach number astrophysical jets with radiative cooling
    Ha, Y
    Gardner, CL
    Gelb, A
    Shu, CW
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (01) : 597 - 612
  • [5] Perfect metamaterial absorber improved laser-driven flyer
    Ji, Xiangbo
    Qin, Wenzhi
    Wu, Xuannan
    Wang, Yao
    Gao, Fuhua
    Wang, Liang
    Hou, Yidong
    NANOPHOTONICS, 2021, 10 (10) : 2683 - 2693
  • [6] Properties of femtosecond laser-driven shock waves in aluminum
    Xin J.
    Weng J.
    Liu C.
    Zhong J.
    Song Z.
    Wang G.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (09): : 2019 - 2022
  • [7] Modeling of laser-driven proton radiography of dense matter
    Kar, S.
    Borghesi, M.
    Audebert, P.
    Benuzzi-Mounaix, A.
    Boehly, T.
    Hicks, D.
    Koenig, M.
    Lancaster, K.
    Lepape, S.
    Mackinnon, A.
    Norreys, P.
    Patel, R.
    Romagnani, L.
    HIGH ENERGY DENSITY PHYSICS, 2008, 4 (1-2) : 26 - 40
  • [8] Reflecting laser-driven shocks in diamond in the megabar pressure range
    Jakubowska, K.
    Mancelli, D.
    Benocci, R.
    Trela, J.
    Errea, I.
    Martynenko, A. S.
    Neumayer, P.
    Rosmej, O.
    Borm, B.
    Molineri, A.
    Verona, C.
    Cannata, D.
    Aliverdiev, A.
    Roman, H. E.
    Batani, D.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9
  • [9] Experimental progress of laser-driven flyers at the SG-III prototype laser facility
    Shui Min
    Chu Gen-Bai
    Xi Tao
    Zhao Yong-Qiang
    Fan Wei
    He Wei-Hua
    Shan Lian-Qiang
    Zhu Bin
    Xin Jian-Ting
    Gu Yu-Qiu
    ACTA PHYSICA SINICA, 2017, 66 (06)
  • [10] Laser-driven flier impact experiments at the SG-III prototype laser facility
    税敏
    储根柏
    辛建婷
    吴玉迟
    朱斌
    何卫华
    席涛
    谷渝秋
    ChinesePhysicsB, 2015, 24 (09) : 323 - 327