In this article we consider the physical justification of the Vortex-Wave equation introduced by Marchioro and Pulvirenti (Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., Amsterdam, North-Holland, pp. 79-95, 1991), in the case of a single point vortex moving in an ambient vorticity. We consider a sequence of solutions for the Euler equation in the plane corresponding to initial data consisting of an ambient vorticity in L (1) a (c) L (a) and a sequence of concentrated blobs which approach the Dirac distribution. We introduce a notion of a weak solution of the Vortex-Wave equation in terms of velocity (or primitive variables) and then show, for a subsequence of the blobs, the solutions of the Euler equation converge in velocity to a weak solution of the Vortex-Wave equation.
机构:
Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Cao, Daomin
Wan, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaChinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
机构:
Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, ItalyUniv Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, Italy
Orlandi, P.
Pirozzoli, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, ItalyUniv Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, Italy
Pirozzoli, S.
Carnevale, G. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, Italy
Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USAUniv Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, I-00184 Rome, Italy