The Vortex-Wave Equation with a Single Vortex as the Limit of the Euler Equation

被引:6
|
作者
Bjorland, Clayton [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
SINGULAR INITIAL DATA; WEAK SOLUTIONS; VORTICITY; EVOLUTION; SHEETS;
D O I
10.1007/s00220-011-1215-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we consider the physical justification of the Vortex-Wave equation introduced by Marchioro and Pulvirenti (Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., Amsterdam, North-Holland, pp. 79-95, 1991), in the case of a single point vortex moving in an ambient vorticity. We consider a sequence of solutions for the Euler equation in the plane corresponding to initial data consisting of an ambient vorticity in L (1) a (c) L (a) and a sequence of concentrated blobs which approach the Dirac distribution. We introduce a notion of a weak solution of the Vortex-Wave equation in terms of velocity (or primitive variables) and then show, for a subsequence of the blobs, the solutions of the Euler equation converge in velocity to a weak solution of the Vortex-Wave equation.
引用
收藏
页码:131 / 151
页数:21
相关论文
共 50 条
  • [1] The Vortex-Wave Equation with a Single Vortex as the Limit of the Euler Equation
    Clayton Bjorland
    Communications in Mathematical Physics, 2011, 305 : 131 - 151
  • [2] Vortex-wave interaction on the surface of a sphere
    Nelson, Rhodri B.
    McDonald, N. Robb
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2011, 105 (01) : 23 - 47
  • [3] THE INVISCID LIMIT OF NAVIER-STOKES EQUATIONS FOR VORTEX-WAVE DATA ON R2
    Nguyen, Toan T.
    Nguyen, Trinh T.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2575 - 2598
  • [4] Existence of a Weak Solution in Lp to the Vortex-Wave System
    Milton C. Lopes Filho
    Evelyne Miot
    Helena J. Nussenzveig Lopes
    Journal of Nonlinear Science, 2011, 21
  • [5] Existence of a Weak Solution in L p to the Vortex-Wave System
    Lopes Filho, Milton C.
    Miot, Evelyne
    Nussenzveig Lopes, Helena J.
    JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (05) : 685 - 703
  • [6] The emergence of localized vortex-wave interaction states in plane Couette flow
    Deguchi, Kengo
    Hall, Philip
    Walton, Andrew
    JOURNAL OF FLUID MECHANICS, 2013, 721 : 58 - 85
  • [7] Global solutions of the random vortex filament equation
    Brzezniak, Z.
    Gubinelli, M.
    Neklyudov, M.
    NONLINEARITY, 2013, 26 (09) : 2499 - 2514
  • [8] Non-uniqueness of Admissible Solutions for the 2D Euler Equation with Lp Vortex Data
    Mengual, Francisco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (09)
  • [9] CONVERGENCE ANALYSIS OF THE VORTEX BLOB METHOD FOR THE b-EQUATION
    Duan, Yong
    Liu, Jian-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1995 - 2011
  • [10] On the Vortex Filament Conjecture for Euler Flows
    Jerrard, Robert L.
    Seis, Christian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) : 135 - 172