Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature

被引:99
作者
Ding, Yao [1 ]
Shi, Cai-Jun [2 ]
Li, Ning [2 ]
机构
[1] Chongqing Univ, Dept Civil Engn, Chongqing, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Slag/FA-based geopolymer concrete (SFGC); Ambient temperature curing; Fracture property; Mechanical property; Three-point bending (TPB) test; ENGINEERED CEMENTITIOUS COMPOSITES; ALKALI-ACTIVATED CONCRETE; FLY-ASH; MECHANICAL-PROPERTIES; STRENGTH PROPERTIES; BEHAVIOR; WORKABILITY; PASTE;
D O I
10.1016/j.conbuildmat.2018.09.138
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Slag/fly ash (FA)-based geopolymer cured in ambient temperature as a green alternative to Portland cement is attracting increasing attentions. The fracture properties of slag/FA-based geopolymer concrete (SFGC) was studied by conducting three-point bending (TPB) tests on precut beams. The effects of material parameters including the alkali concentration, the modulus of alkali activator, the slag/FA mass ratio and the liquid/binder ratio on the fracture properties of SFGC were assessed. The results exhibit that the fracture behaviors of SFGC are influenced significantly by the material parameters. The fracture energy and the ultimate load of TPB tests of SFGC beams increase with the increase of the alkali concentration, the modulus of alkali activator as well as the slag/FA ratio while decrease with the increase of liquid/binder ratio. The Baiant and Becq-Giraduon model predicts well whereas the CEB-FIP model underestimates the fracture energy of SFGC beams. Besides, the characteristic length of SFGC decreases with the increase of compressive strength regardless of the mix proportion, and is higher than the prediction for Portland cement concrete (PCC) given the similar compressive strength, suggesting that SFGC might be more ductile. In addition, the relationships between compressive strength, splitting tensile strength, elastic modulus and material parameters of SFGC specimens are also discussed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 50 条
  • [31] Fly ash-based geopolymer: clean production, properties and applications
    Zhuang, Xiao Yu
    Chen, Liang
    Komarneni, Sridhar
    Zhou, Chun Hui
    Tong, Dong Shen
    Yang, Hui Min
    Yu, Wei Hua
    Wang, Hao
    JOURNAL OF CLEANER PRODUCTION, 2016, 125 : 253 - 267
  • [32] Engineering properties of Class-F fly ash-based geopolymer concrete
    Albitar, M.
    Visintin, P.
    Ali, M. S. Mohamed
    CONSTRUCTION MATERIALS AND STRUCTURES, 2014, : 495 - 502
  • [33] Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete
    Hassan, Amer
    Arif, Mohammed
    Shariq, M.
    SN APPLIED SCIENCES, 2019, 1 (12):
  • [34] Effect of Ground Granulated Blast Slag and Temperature Curing on the Strength of Fly Ash-based Geopolymer Concrete
    Kumar, Anil
    Rajkishor
    Kumar, Niraj
    Chhotu, Anil Kumar
    Kumar, Bhushan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13319 - 13323
  • [35] Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete
    Amer Hassan
    Mohammed Arif
    M. Shariq
    SN Applied Sciences, 2019, 1
  • [36] Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag
    Niklioc, I.
    Markovic, S.
    Jankovic-Castvan, I.
    Radmilovic, V. V.
    Karanovic, Lj.
    Babic, Biljana
    Radmilovic, V. R.
    MATERIALS LETTERS, 2016, 176 : 301 - 305
  • [37] Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties
    Dehghani, Ayoub
    Aslani, Farhad
    Panah, Neda Ghaebi
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 293
  • [38] The influence of ambient pH on fly ash-based geopolymer
    Anh Duong Nguyen
    Skvara, Frantisek
    CEMENT & CONCRETE COMPOSITES, 2016, 72 : 275 - 283
  • [39] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [40] Ambient cured high calcium fly ash geopolymer concrete with dolomite powder
    Prabha, V. C.
    Revathi, V
    Reddy, S. Sivamurthy
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (15) : 7857 - 7877