EnsCat: clustering of categorical data via ensembling

被引:0
|
作者
Clarke, Bertrand S. [1 ]
Amiri, Saeid [2 ]
Clarke, Jennifer L. [1 ,3 ]
机构
[1] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE 68588 USA
[2] Univ Wisconsin Madison, Dept Nat & Appl Sci, Iowa City, IA USA
[3] Univ Nebraska Lincoln, Dept Food Sci & Technol, Lincoln, NE 68588 USA
来源
BMC BIOINFORMATICS | 2016年 / 17卷
基金
美国国家科学基金会;
关键词
Categorical data; Clustering; Ensembling methods; High dimensional data; ALGORITHM;
D O I
10.1186/s12859-016-1245-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Clustering is a widely used collection of unsupervised learning techniques for identifying natural classes within a data set. It is often used in bioinformatics to infer population substructure. Genomic data are often categorical and high dimensional, e.g., long sequences of nucleotides. This makes inference challenging: The distance metric is often not well-defined on categorical data; running time for computations using high dimensional data can be considerable; and the Curse of Dimensionality often impedes the interpretation of the results. Up to the present, however, the literature and software addressing clustering for categorical data has not yet led to a standard approach. Results: We present software for an ensemble method that performs well in comparison with other methods regardless of the dimensionality of the data. In an ensemble method a variety of instantiations of a statistical object are found and then combined into a consensus value. It has been known for decades that ensembling generally outperforms the components that comprise it in many settings. Here, we apply this ensembling principle to clustering. We begin by generating many hierarchical clusterings with different clustering sizes. When the dimension of the data is high, we also randomly select subspaces also of variable size, to generate clusterings. Then, we combine these clusterings into a single membership matrix and use this to obtain a new, ensembled dissimilarity matrix using Hamming distance. Conclusions: Ensemble clustering, as implemented in R and called EnsCat, gives more clearly separated clusters than other clustering techniques for categorical data. The latest version with manual and examples is available at https://github.com/jlp2duke/EnsCat.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] EnsCat: clustering of categorical data via ensembling
    Bertrand S. Clarke
    Saeid Amiri
    Jennifer L. Clarke
    BMC Bioinformatics, 17
  • [2] Clustering Categorical Data via Ensembling Dissimilarity Matrices
    Amiri, Saeid
    Clarke, Bertrand S.
    Clarke, Jennifer L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 195 - 208
  • [3] Interpretable categorical data clustering via hypothesis testing
    Hu, Lianyu
    Jiang, Mudi
    Dong, Junjie
    Liu, Xinying
    He, Zengyou
    PATTERN RECOGNITION, 2025, 162
  • [4] Efficiency Based Categorical Data Clustering
    Kalaivani, K.
    Raghavendra, A. P. V.
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 550 - 553
  • [5] Clustering categorical data in projected spaces
    Bouguessa, Mohamed
    DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (01) : 3 - 38
  • [6] Generalized Similarity Measure for Categorical Data Clustering
    Sharma, Shruti
    Singh, Manoj
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 765 - 769
  • [7] Rough Set Approach for Categorical Data Clustering
    Herawan, Tutut
    Yanto, Iwan Tri Riyadi
    Deris, Mustafa Mat
    DATABASE THEORY AND APPLICATION, 2009, 64 : 179 - 186
  • [8] The Performance of Objective Functions for Clustering Categorical Data
    Xiang, Zhengrong
    Islam, Md Zahidul
    KNOWLEDGE MANAGEMENT AND ACQUISITION FOR SMART SYSTEMS AND SERVICES, PKAW 2014, 2014, 8863 : 16 - 28
  • [9] Clustering categorical data streams
    He, Zengyou
    Xu, Xiaofei
    Deng, Shengchun
    Huang, Joshua Zhexue
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2011, 11 (04) : 185 - 192
  • [10] An effective dissimilarity measure for clustering of high-dimensional categorical data
    Lee, Jeonghoon
    Lee, Yoon-Joon
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 38 (03) : 743 - 757