Graphene/Amorphous Carbon Restriction Structure for Stable and Long-Lifespan Antimony Anode in Potassium-Ion Batteries

被引:12
作者
Yang, Xu [1 ]
Zhang, Rongyu [1 ]
Xu, Shifeng [1 ]
Xu, Dan [1 ]
Ma, Jia [1 ]
Zhang, Zhongyu [2 ]
Yang, Shu [1 ]
机构
[1] Shenyang Aerosp Univ, Coll Sci, Shenyang 110135, Peoples R China
[2] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
基金
中国博士后科学基金;
关键词
anode materials; antimony; energy storage; potassium-ion batteries; restriction structure; LITHIUM-ION; SB NANOPARTICLES; SODIUM; NANOCOMPOSITE; PERFORMANCE; ELECTRODES; GRAPHENE;
D O I
10.1002/chem.201905311
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sb-based materials have attracted much attention owing to their ability to undergo a multi-electron alloy reaction with K+. However, there are still the serious problems of volume change and aggregation of particles, which lead to rapid capacity fading and a limited lifespan. In this work, a graphene/amorphous carbon restriction structure is proposed, in which the amorphous carbon layer on the surface of Sb nanoparticles can protect the particles from pulverization, and the graphene can buffer the volume change of the material. In addition, the conductive network formed by the dual carbon structure effectively improves the rate performance of the material. Thus, the material delivers a high capacity of 550 mA h g(-1) at 100 mA g(-1), a rate capability of 370 mA h g(-1) at 2000 mA g(-1), and a long lifespan of 350 cycles without significant capacity fading. The dual carbon strategy proposed offers a reference for the design of high-performance anode materials.
引用
收藏
页码:5818 / 5823
页数:6
相关论文
共 41 条
  • [1] Germanium as negative electrode material for sodium-ion batteries
    Baggetto, Loic
    Keum, Jong K.
    Browning, James F.
    Veith, Gabriel M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 41 - 44
  • [2] A novel K-ion battery: hexacyanoferrate(II)/graphite cell
    Bie, Xiaofei
    Kubota, Kei
    Hosaka, Tomooki
    Chihara, Kuniko
    Komaba, Shinichi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4325 - 4330
  • [3] Organic electrode for non-aqueous potassium-ion batteries
    Chen, Yanan
    Luo, Wei
    Carter, Marcus
    Zhou, Lihui
    Dai, Jiaqi
    Fu, Kun
    Lacey, Steven
    Li, Tian
    Wan, Jiayu
    Han, Xiaogang
    Bao, Yanping
    Hu, Liangbing
    [J]. NANO ENERGY, 2015, 18 : 205 - 211
  • [4] Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism
    Darwiche, Ali
    Marino, Cyril
    Sougrati, Moulay T.
    Fraisse, Bernard
    Stievano, Lorenzo
    Monconduit, Laure
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) : 20805 - 20811
  • [5] Potassium secondary cell based on Prussian blue cathode
    Eftekhari, A
    [J]. JOURNAL OF POWER SOURCES, 2004, 126 (1-2) : 221 - 228
  • [6] Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode
    Jian, Zelang
    Xing, Zhenyu
    Bommier, Clement
    Li, Zhifei
    Ji, Xiulei
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (03)
  • [7] Carbon Electrodes for K-Ion Batteries
    Jian, Zelang
    Luo, Wei
    Ji, Xiulei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) : 11566 - 11569
  • [8] Recent Progress and Perspective in Electrode Materials for K-Ion Batteries
    Kim, Haegyeom
    Kim, Jae Chul
    Bianchini, Matteo
    Seo, Dong-Hwa
    Rodriguez-Garcia, Jorge
    Ceder, Gerbrand
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (09)
  • [9] Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material
    Kim, Hyesun
    Cho, Jaephil
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (05) : 1679 - 1681
  • [10] Lei K., 2018, Angew. Chem. Int. Ed., V130, P4777, DOI [10.1002/ange.201801389, DOI 10.1002/ANGE.201801389]