Transformation polytopes for line correspondences in digital images

被引:0
作者
Teelen, Kristof [1 ]
Veelaert, Peter [1 ]
机构
[1] Engn Sci Ghent Univ Assoc, Univ Coll Ghent, B-9000 Ghent, Belgium
来源
COMBINATORIAL IMAGE ANALYSIS | 2008年 / 4958卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an uncertainty model for geometric transformations, based on polygonal uncertainty regions and transformation polytopes. The main contribution of this paper is a systematic approach for the computation of regions of interest for features by using the uncertainty model. The focus is on the solution of transformation problems for geometric primitives, especially lines, so that regions of interest can be computed for corresponding geometric features in distinct images.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 1993, GEOMETRIC ALGORITHMS
[2]  
Förstner W, 2005, HANDBOOK OF GEOMETRIC COMPUTING: APPLICATIONS IN PATTERN RECOGNITION, COMPUTER VISION, NEURALCOMPUTING, AND ROBOTICS, P493, DOI 10.1007/3-540-28247-5_15
[3]  
Kanatani K, 2005, HANDBOOK OF GEOMETRIC COMPUTING: APPLICATIONS IN PATTERN RECOGNITION, COMPUTER VISION, NEURALCOMPUTING, AND ROBOTICS, P461, DOI 10.1007/3-540-28247-5_14
[4]   Uncertainty modeling and model selection for geometric inference [J].
Kanatani, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (10) :1307-1319
[5]  
Perwass C, 2005, LECT NOTES COMPUT SC, V3663, P459
[6]  
Perwass C, 2006, COMP IMAG VIS, P23
[7]  
Teelen K, 2005, LECT NOTES COMPUT SC, V3708, P348
[8]  
TEELEN K, 2004, P ACIVS 2004, P23
[9]  
TEELEN K, P SPIE VISION GEOMET, V13, P1
[10]  
TEELEN K, 2004, P PRORISC 2004, P317