Spatial-temporal interaction learning based two-stream network for action recognition

被引:38
|
作者
Liu, Tianyu [1 ]
Ma, Yujun [2 ]
Yang, Wenhan [1 ]
Ji, Wanting [3 ]
Wang, Ruili [2 ]
Jiang, Ping [1 ]
机构
[1] Hunan Agr Univ, Coll Mech & Elect Engn, Changsha, Peoples R China
[2] Massey Univ, Sch Math & Computat Sci, Auckland, New Zealand
[3] Liaoning Univ, Sch Informat, Shenyang, Peoples R China
关键词
Action recognition; Spatial-temporal; Two-stream CNNs;
D O I
10.1016/j.ins.2022.05.092
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two-stream convolutional neural networks have been widely applied to action recognition. However, two-stream networks are usually adopted to capture spatial information and temporal information separately, which normally ignore the strong complementarity and correlation between spatial and temporal information in videos. To solve this problem, we propose a Spatial-Temporal Interaction Learning Two-stream network (STILT) for action recognition. Our proposed two-stream (i.e., a spatial stream and a temporal stream) network has a spatial-temporal interaction learning module, which uses an alternating co attention mechanism between two streams to learn the correlation between spatial features and temporal features. The spatial-temporal interaction learning module allows the two streams to guide each other and then generates optimized spatial attention features and temporal attention features. Thus, the proposed network can establish the interactive connection between two streams, which efficiently exploits the attended spatial and temporal features to improve recognition accuracy. Experiments on three widely used datasets (i.e., UCF101, HMDB51 and Kinetics) show that the proposed network outperforms the state-of-the-art models in action recognition.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:864 / 876
页数:13
相关论文
共 50 条
  • [1] Spatial-temporal multiscale feature optimization based two-stream convolutional neural network for action recognition
    Xia, Limin
    Fu, Weiye
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 11611 - 11626
  • [2] Two-stream spatial-temporal neural networks for pose-based action recognition
    Wang, Zixuan
    Zhu, Aichun
    Hu, Fangqiang
    Wu, Qianyu
    Li, Yifeng
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (04)
  • [3] Skeleton-Based Action Recognition Through Contrasting Two-Stream Spatial-Temporal Networks
    Pang, Chen
    Lu, Xuequan
    Lyu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8699 - 8711
  • [4] Video Saliency Prediction Based on Spatial-Temporal Two-Stream Network
    Zhang, Kao
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (12) : 3544 - 3557
  • [5] Two-Stream Collaborative Learning With Spatial-Temporal Attention for Video Classification
    Peng, Yuxin
    Zhao, Yunzhen
    Zhang, Junchao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (03) : 773 - 786
  • [6] Hidden Two-Stream Collaborative Learning Network for Action Recognition
    Zhou, Shuren
    Chen, Le
    Sugumaran, Vijayan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (03): : 1545 - 1561
  • [7] Skeleton-based emotion recognition based on two-stream self-attention enhanced spatial-temporal graph convolutional network
    Shi, Jiaqi
    Liu, Chaoran
    Ishi, Carlos Toshinori
    Ishiguro, Hiroshi
    Sensors (Switzerland), 2021, 21 (01): : 1 - 16
  • [8] Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
    Shi, Jiaqi
    Liu, Chaoran
    Ishi, Carlos Toshinori
    Ishiguro, Hiroshi
    SENSORS, 2021, 21 (01) : 1 - 16
  • [9] STA-GCN: two-stream graph convolutional network with spatial-temporal attention for hand gesture recognition
    Zhang, Wei
    Lin, Zeyi
    Cheng, Jian
    Ma, Cuixia
    Deng, Xiaoming
    Wang, Hongan
    VISUAL COMPUTER, 2020, 36 (10-12): : 2433 - 2444
  • [10] Spatial-Temporal Attention Two-Stream Convolution Neural Network for Smoke Region Detection
    Ding, Zhipeng
    Zhao, Yaqin
    Li, Ao
    Zheng, Zhaoxiang
    FIRE-SWITZERLAND, 2021, 4 (04):