Synchronization control in networks with uniform and distributed phase lag

被引:25
作者
Lohe, M. A. [1 ]
机构
[1] Univ Adelaide, Dept Phys, Ctr Complex Syst & Struct Matter, Adelaide, SA 5005, Australia
关键词
Synchronization; Phase lag; Time delay; Control parameters; Finite nodes; KURAMOTO MODEL; PARTIAL ENTRAINMENT; LOCKING; OSCILLATORS; POPULATIONS; AGREEMENT; STABILITY; BEHAVIOR; STATE;
D O I
10.1016/j.automatica.2015.01.034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that phase lag angles in oscillator networks can be used to control the frequency of synchronized oscillations, either to adjust the common frequency to any preset value, within limits, or else to damp out any highly oscillatory nodes so that the system oscillates almost independently of the phase lag. We investigate in particular the Sakaguchi-Kuramoto model and a generalization with nonisochronous oscillations, for globally connected networks, to show that synchronization occurs under a broad set of conditions for both uniform and distributed phase lag, and find specific formulas for the common frequency of oscillation. The analysis is valid for any finite number of nodes and for arbitrary distributions of phase lag angles and local frequencies, and can be extended to systems with time delayed interactions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 123
页数:10
相关论文
共 45 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Existence of partial entrainment and stability of phase locking behavior of coupled oscillators [J].
Aeyels, D ;
Rogge, JA .
PROGRESS OF THEORETICAL PHYSICS, 2004, 112 (06) :921-942
[3]  
[Anonymous], 1984, Progress of Theoretical Physics Suppl, DOI DOI 10.1143/PTPS.79.223
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Collective Modes of Coupled Phase Oscillators with Delayed Coupling [J].
Ares, Saul ;
Morelli, Luis G. ;
Joerg, David J. ;
Oates, Andrew C. ;
Juelicher, Frank .
PHYSICAL REVIEW LETTERS, 2012, 108 (20)
[6]   Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states [J].
Choe, Chol-Ung ;
Dahms, Thomas ;
Hoevel, Philipp ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2010, 81 (02)
[7]   Synchronization in a system of globally coupled oscillators with time delay [J].
Choi, MY ;
Kim, HJ ;
Kim, D ;
Hong, H .
PHYSICAL REVIEW E, 2000, 61 (01) :371-381
[8]   On Exponential Synchronization of Kuramoto Oscillators [J].
Chopra, Nikhil ;
Spong, Mark W. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :353-357
[9]   Partial entrainment in the finite Kuramoto-Sakaguchi model [J].
De Smet, Filip ;
Aeyels, Dirk .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 234 (02) :81-89
[10]   Resonances and entrainment breakup in Kuramoto models with multimodal frequency densities [J].
De Smet, Filip ;
Aeyels, Dirk .
PHYSICAL REVIEW E, 2008, 77 (06)