Thioglycolic Acid FTIR Spectra on Ag2S Quantum Dots Interfaces

被引:45
|
作者
Kondratenko, Tamara [1 ]
Ovchinnikov, Oleg [1 ]
Grevtseva, Irina [1 ]
Smirnov, Mikhail [1 ,2 ]
Erina, Oksana [3 ]
Khokhlov, Vladimir [3 ]
Darinsky, Boris [3 ]
Tatianina, Elena [4 ]
机构
[1] Voronezh State Univ, Dept Opt & Spect, Voronezh 394018, Russia
[2] Voronezh State Univ Engn Technol, Fed State Budget Educ Inst Higher Educ, Voronezh 3394036, Russia
[3] Voronezh State Univ, Dept Analyt Chem, Voronezh 394018, Russia
[4] Voronezh State Tech Univ, Dept Phys, Voronezh 394006, Russia
基金
俄罗斯科学基金会;
关键词
thioglycolic acid (TGA); Ag2S quantum dots; FTIR spectra; luminescence; photodegradation; dimer; ionic form; SELF-ASSEMBLED MONOLAYERS; ANHARMONIC-FORCE FIELDS; 3-MERCAPTOPROPIONIC ACID; CARBOXYLIC-ACIDS; RAMAN-SPECTRA; NANOPARTICLES; SURFACE; GOLD; PHOTODEGRADATION; LUMINESCENCE;
D O I
10.3390/ma13040909
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism features of colloidal quantum dots (QDs) passivation with thioglycolic acid molecules (TGA) for cases of different luminescent properties is considered using FTIR. This problem is considered based on FTIR spectra analysis for various ionic forms of TGA. Experimental TGA molecules FTIR spectra is interpreted, basing on the data on modeling of TGA vibrational modes, realized in the framework of density functional method (DFT /B3LYP/6-31+G(d)) taking into account the vibrations anharmonicity of every functional group. This approach provides a significant improvement in the agreement between the experimental and calculated data. FTIR spectra of Ag2S/TGA QDs with exciton and recombination luminescence are differ from each other and B "freeB" TGA molecules. The n(S H) TGA peak (2559 cm 1) disappears in FTIR spectra of Ag2S/TGA QD samples. This fact indicates the interactions between TGA thiol group and dangling bonds of Ag2S nanocrystals. Ag2S QDs passivation with TGA molecules leads to emergence nas(COO) (1584 cm 1) and ns(COO) (1387 cm 1) peaks. It indicates TGA adsorption in ionic form. For Ag2S/TGA QDs with exciton luminescence we observed (a) significant low-frequency shift of ns(COO) peak from 1388 cm 1 to 1359 cm 1 and high-frequency shift of nas(COO) peak from 1567 cm 1 to 1581 cm 1; (b) change in the ratio of intensities of nas(COO) and ns(COO) vibrations. This feature is caused by the change in the symmetry of TGA molecules due to passivation of Ag2S quantum dots.For Ag2S/TGA QDs with recombination luminescence, the insignificant high-frequency shift of 7-10 cm 1 for nas (COO) at 1567 cm 1 and low-frequency shift of 3-5 cm 1 for ns (COO) at 1388 cm 1, probably caused by the interaction of thiol with Ag2S surface is observed. Using FTIR spectra, it was found that IR luminescence photodegradation is also accompanied by changes in the thioglycolic acid molecules, which capped Ag2S QDs. In the case of Ag2S QDs with exciton luminescence, the degradation process is non-reversible. It is accompanied by TGA photodegradation with the formation of a-thiol-substituted acyl radical (S-CH2-CO center dot) TGA.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules
    Kondratenko, T. S.
    Smirnov, M. S.
    Ovchinnikov, O., V
    Zvyagin, A., I
    Ganeev, R. A.
    Grevtseva, I. G.
    OPTIK, 2020, 200 (200):
  • [22] Optical power limiting in ensembles of colloidal Ag2S quantum dots
    Ovchinnikov, O. V.
    Smirnov, M. S.
    Perepelitsa, A. S.
    Shatskikh, T. S.
    Shapiro, B. I.
    QUANTUM ELECTRONICS, 2015, 45 (12) : 1143 - 1150
  • [23] Solvent Tailored Strategy for Synthesis of Ultrasmall Ag2S Quantum Dots with Near-Infrared-II Luminescence
    Xing, Lili
    Xu, Suying
    Cui, Jiabin
    Wang, Leyu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (08) : 4549 - 4555
  • [24] Molecularly imprinted Ag2S quantum dots with high photocatalytic activity for dye removal: Experimental and DFT insights
    Malik, Azad Qayoom
    Jabeen, Tabinda
    Lokhande, Prasad Eknath
    Kumar, Deepak
    Awasthi, Shikha
    Pandey, Sarvesh Kumar
    Mubarak, Nabisab Mujawar
    Abnisa, Faisal
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 366
  • [25] Silver sulphide (Ag2S) quantum dots synthesized from aqueous route with enhanced antimicrobial and dye degradation capabilities
    Sharma, Ambalika
    Sharma, Rahul
    Thakur, Nitika
    Sharma, Pallavi
    Kumari, Asha
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 151
  • [26] Synthesis of Ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route
    Chen, Jun
    Zhang, Tao
    Feng, Lili
    Zhang, Meiqing
    Zhang, Xin
    Su, Haichung
    Cui, Daxiang
    MATERIALS LETTERS, 2013, 96 : 224 - 227
  • [27] Optical and structural properties of ensembles of colloidal Ag2S quantum dots in gelatin
    Ovchinnikov, O. V.
    Smirnov, M. S.
    Shapiro, B. I.
    Shatskikh, T. S.
    Perepelitsa, A. S.
    Korolev, N. V.
    SEMICONDUCTORS, 2015, 49 (03) : 373 - 379
  • [28] Synthesis and Bioapplications of Ag2S Quantum Dots with Near-Infrared Fluorescence
    Ding, Caiping
    Huang, Youju
    Shen, Zheyu
    Chen, Xiaoyuan
    ADVANCED MATERIALS, 2021, 33 (32)
  • [29] IR Luminescence of Polyfunctional Associates of Indocyanine Green and Ag2S Quantum Dots
    Kondratenko, T. S.
    Smirnov, M. S.
    Ovchinnikov, O. V.
    Grevtseva, I. G.
    Latyshev, A. N.
    OPTICS AND SPECTROSCOPY, 2020, 128 (08) : 1278 - 1285
  • [30] Biocompatible Ag2S quantum dots for highly sensitive detection of copper ions
    Jiang, Peng
    Li, Shulan
    Ha, Minlu
    Liu, Yi
    Chen, Zilin
    ANALYST, 2019, 144 (08) : 2604 - 2610