Deep Learning for Basal Cell Carcinoma Detection for Reflectance Confocal Microscopy

被引:32
作者
Campanella, Gabriele [1 ,2 ]
Navarrete-Dechent, Cristian [3 ,4 ]
Liopyris, Konstantinos [4 ]
Monnier, Jilliana [4 ,5 ,6 ,7 ]
Aleissa, Saud [4 ,8 ]
Minhas, Brahmteg [4 ]
Scope, Alon [9 ,10 ]
Longo, Caterina [11 ,12 ]
Guitera, Pascale [13 ,14 ,15 ]
Pellacani, Giovanni [11 ]
Kose, Kivanc [4 ]
Halpern, Allan C. [4 ,16 ]
Fuchs, Thomas J. [1 ,2 ,17 ]
Jain, Manu [4 ,16 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
[2] Cornell Univ, Grad Sch Med Sci, Weill Cornell Med, New York, NY 10021 USA
[3] Pontificia Univ Catolica Chile, Sch Med, Dept Dermatol, Santiago, Chile
[4] Mem Sloan Kettering Canc Ctr, Dept Med, Dermatol Serv, Div Subspecialty Med, New York, NY 10021 USA
[5] Aix Marseille Univ, La Timone Hosp, Dermatol & Skin Canc Dept, Marseille, France
[6] Aix Marseille Univ, Marseille Canc Res Ctr CRCM, Inserm 1068, CNRS 7258, Marseille, France
[7] Aix Marseille Univ, Comp Sci & Syst Lab, CNRS 7020, Marseille, France
[8] King Abdulaziz Univ, Fac Med, Dept Dermatol, Jeddah, Saudi Arabia
[9] Tel Aviv Univ, Sheba Med Ctr, Kittner Skin Canc Screening & Res Inst, Dept Dermatol, Tel Aviv, Israel
[10] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
[11] Univ Modena & Reggio Emilia, Dept Dermatol, Modena, Italy
[12] Ist Ricovero & Cura Carattere Sci Reggio Emilia, Azienda Unita Sanitaria Locale, Ctr Oncol & Alta Tecnol Diagnost Dermatol, Reggio Emilia, Italy
[13] Royal Prince Alfred Hosp, Fac Med & Hlth, Sydney Melanoma Diagnost Ctr, Sydney, NSW, Australia
[14] Univ Sydney, Sydney, NSW, Australia
[15] Melanoma Inst Australia, Sydney, NSW, Australia
[16] Weill Cornell Med, Dept Dermatol, New York, NY USA
[17] Icahn Sch Med Mt Sinai, Dept Pathol Mol & Cell Based Med, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
IN-VIVO; HAND-HELD; DIAGNOSIS;
D O I
10.1016/j.jid.2021.06.015
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Basal cell carcinoma (BCC) is the most common skin cancer, with over 2 million cases diagnosed annually in the UnitedStates. Conventionally, BCC is diagnosed by naked eye examination and dermoscopy. Suspicious lesions are either removed or biopsied for histopathological confirmation, thus lowering the specificity of noninvasive BCC diagnosis. Recently, reflectance confocal microscopy, a noninvasive diagnostic technique that can image skin lesions at cellular level resolution, has shown to improve specificity in BCC diagnosis and reduced the number needed to biopsy by 2-3 times. In this study, we developed and evaluated a deep learning-based artificial intelligence model to automatically detect BCC in reflectance confocal microscopy images. The proposed model achieved an area under the curve for the receiver operator characteristic curve of 89.7%(stack level) and 88.3%(lesion level), a performance on par with that of reflectance confocal microscopy experts. Furthermore, themodel achieved an area under the curve of 86.1% on a held-out test set from international collaborators, demonstrating the reproducibility and generalizability of the proposed automated diagnostic approach. These results provide a clear indication that the clinical deployment of decision support systems for the detection of BCC in reflectance confocal microscopy images has the potential for optimizing the evaluation and diagnosis of patients with skin cancer.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 20 条
[1]   A Multiresolution Convolutional Neural Network with Partial Label Training for Annotating Reflectance Confocal Microscopy Images of Skin [J].
Bozkurt, Alican ;
Kose, Kivanc ;
Alessi-Fox, Christi ;
Gill, Melissa ;
Dy, Jennifer ;
Brooks, Dana ;
Rajadhyaksha, Milind .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :292-299
[2]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[3]   Accuracy of in vivo confocal microscopy for diagnosis of basal cell carcinoma: a comparative study between handheld and wide-probe confocal imaging [J].
Castro, R. P. ;
Stephens, A. ;
Fraga-Braghiroli, N. A. ;
Oliviero, M. C. ;
Rezze, G. G. ;
Rabinovitz, H. ;
Scope, A. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2015, 29 (06) :1164-1169
[4]   Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera [J].
Dickensheets, David L. ;
Kreitinger, Seth ;
Peterson, Gary ;
Heger, Michael ;
Rajadhyaksha, Milind .
PHOTONIC THERAPEUTICS AND DIAGNOSTICS XII, 2016, 9689
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Evaluation of Bedside Diagnostic Accuracy, Learning Curve, and Challenges for a Novice Reflectance Confocal Microscopy Reader for Skin Cancer Detection In Vivo [J].
Jain, Manu ;
Pulijal, Sri Varsha ;
Rajadhyaksha, Milind ;
Halpern, Allan C. ;
Gonzalez, Salvador .
JAMA DERMATOLOGY, 2018, 154 (08) :962-965
[8]   In vivo confocal microscopy of basal cell carcinoma: a systematic review of diagnostic accuracy [J].
Kadouch, D. J. ;
Schram, M. E. ;
Leeflang, M. M. ;
Limpens, J. ;
Spuls, P. I. ;
de Rie, M. A. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2015, 29 (10) :1890-1897
[9]   Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network (MED-Net) [J].
Kose, Kivanc ;
Bozkurt, Alican ;
Alessi-Fox, Christi ;
Gill, Melissa ;
Longo, Caterina ;
Pellacani, Giovanni ;
Dy, Jennifer G. ;
Brooks, Dana H. ;
Rajadhyaksha, Milind .
MEDICAL IMAGE ANALYSIS, 2021, 67
[10]   Utilizing Machine Learning for Image Quality Assessment for Reflectance Confocal Microscopy [J].
Kose, Kivanc ;
Bozkurt, Alican ;
Alessi-Fox, Christi ;
Brooks, Dana H. ;
Dy, Jennifer G. ;
Rajadhyaksha, Milind ;
Gill, Melissa .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (06) :1214-1222