Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation

被引:119
作者
Hou, Yuenan [1 ]
Zhu, Xinge [2 ]
Ma, Yuexin [3 ]
Loy, Chen Change [4 ]
Li, Yikang [1 ]
机构
[1] Shanghai AI Lab, Shanghai, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] ShanghaiTech Univ, Shanghai, Peoples R China
[4] Nanyang Technol Univ, S Lab, Singapore, Singapore
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.00829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article addresses the problem of distilling knowledge from a large teacher model to a slim student network for LiDAR semantic segmentation. Directly employing previous distillation approaches yields inferior results due to the intrinsic challenges of point cloud, i.e., sparsity, randomness and varying density. To tackle the aforementioned problems, we propose the Point-to-Voxel Knowledge Distillation(PVD), which transfers the hidden knowledge from both point level and voxel level. Specifically, we first leverage both the pointwise and voxelwise output distillation to complement the sparse supervision signals. Then, to better exploit the structural information, we divide the whole point cloud into several supervoxels and design a difficulty-aware sampling strategy to more frequently sample supervoxels containing less-frequent classes and faraway objects. On these supervoxels, we propose inter-point and inter-voxel affinity distillation, where the similarity information between points and voxels can help the student model better capture the structural information of the surrounding environment.We conduct extensive experiments on two popular LiDAR segmentation benchmarks, i.e., nuScenes [3] and SemanticKITTI [1]. On both benchmarks, our PVD-consistently outperforms previous distillation approaches by a large margin on three representative backbones, i.e.,Cylinder3D [36, 37], SPVNAS [25] and MinkowskiNet [5]. Notably, on the challenging nuScenes and SemanticKITTI datasets, our method can achieve roughly 75% MACs reduction and 2x speedup on the competitive Cylinder3D model and rank 1st on the SemanticKITTI leaderboard among all published algorithms(1). Our code is available athttps:// github.com/cardwing/Codes-for-PVKD.
引用
收藏
页码:8469 / 8478
页数:10
相关论文
共 37 条
[1]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[2]   The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks [J].
Berman, Maxim ;
Triki, Amal Rannen ;
Blaschko, Matthew B. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4413-4421
[3]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[4]   (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network [J].
Cheng, Ran ;
Razani, Ryan ;
Taghavi, Ehsan ;
Li, Enxu ;
Liu, Bingbing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12542-12551
[5]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[6]  
Cortinhal Tiago, 2020, Advances in Visual Computing. 15th International Symposium, ISVC 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12510), P207, DOI 10.1007/978-3-030-64559-5_16
[7]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[8]   Deep FusionNet for Point Cloud Semantic Segmentation [J].
Zhang, Feihu ;
Fang, Jin ;
Wah, Benjamin ;
Torr, Philip .
COMPUTER VISION - ECCV 2020, PT XXIV, 2020, 12369 :644-663
[9]   TORNADO-Net: mulTiview tOtal vaRiatioN semAntic segmentation with Diamond inceptiOn module [J].
Gerdzhev, Martin ;
Razani, Ryan ;
Taghavi, Ehsan ;
Liu Bingbing .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :9543-9549
[10]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232