Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair

被引:104
作者
Heymer, Andrea [1 ]
Haddad, Daniel [2 ,3 ]
Weber, Meike [1 ]
Gbureck, Uwe [4 ]
Jakob, Peter M. [2 ,3 ]
Eulert, Jochen [1 ]
Noeth, Ulrich [1 ]
机构
[1] Univ Wurzburg, Orthoped Ctr Musculoskeletal Res, Div Tissue Engn, D-97074 Wurzburg, Germany
[2] Res Ctr Magnet Resonance Bavaria, D-97074 Wurzburg, Germany
[3] Univ Wurzburg, Dept Phys, EPV, D-97074 Wurzburg, Germany
[4] Univ Wurzburg, Dept Funct Mat Med & Dent, D-97074 Wurzburg, Germany
关键词
mesenchymal stem cell; MRI (magnetic resonance imaging); collagen hydrogel; SPIO nanoparticle; cartilage tissue engineering;
D O I
10.1016/j.biomaterials.2007.12.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
For the development of new therapeutical cell-based strategies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. We present a systematic and detailed study on the performance and biological impact of a simple and efficient labelling protocol for human mesenchymal stem cells (hMSCs). Commercially available very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake via endocytosis was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabelled cells, VSOP-labelling did neither influence the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect hNISCs in undergoing adipogenic, osteogenic or chondrogenic differentiation, as demonstrated histologically and by gene expression analyses. The efficiency of the labelling protocol was assessed with high-resolution MR imaging at 11.7 T. VSOP-labelled hMSCs were visualised in a collagen type I hydrogel, which is in clinical use for matrix-based articular cartilage repair. The presence of VSOP-labelled hMSCs was indicated by distinct hypointense spots in the MR images, as a result of iron specific loss of signal intensity. In summary, this labelling technique has great potential to visualise hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1473 / 1483
页数:11
相关论文
共 46 条
[1]   Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging [J].
Ahrens, ET ;
Feili-Hariri, M ;
Xu, H ;
Genove, G ;
Morel, PA .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (06) :1006-1013
[2]   Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and efficacy study [J].
Anzai, Y ;
Piccoli, CW ;
Outwater, EK ;
Stanford, W ;
Bluemke, DA ;
Nurenberg, P ;
Saini, S ;
Maravilla, KR ;
Feldman, DE ;
Schmiedl, UP ;
Brunberg, JA ;
Francis, IR ;
Harms, SE ;
Som, PM ;
Tempany, CM .
RADIOLOGY, 2003, 228 (03) :777-788
[3]   Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging [J].
Arbab, AS ;
Bashaw, LA ;
Miller, BR ;
Jordan, EK ;
Lewis, BK ;
Kalish, H ;
Frank, JA .
RADIOLOGY, 2003, 229 (03) :838-846
[4]   Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells [J].
Arbab, AS ;
Yocum, GT ;
Rad, AM ;
Khakoo, AY ;
Fellowes, V ;
Read, EJ ;
Frank, JA .
NMR IN BIOMEDICINE, 2005, 18 (08) :553-559
[5]   Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic reisonance imaging after cell transplantation: Methods and techniques [J].
Arbab, AS ;
Bashaw, LA ;
Miller, BR ;
Jordan, EK ;
Bulte, JWM ;
Frank, JA .
TRANSPLANTATION, 2003, 76 (07) :1123-1130
[6]   Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI [J].
Arbab, AS ;
Yocum, GT ;
Kalish, H ;
Jordan, EK ;
Anderson, SA ;
Khakoo, AY ;
Read, EJ ;
Frank, JA .
BLOOD, 2004, 104 (04) :1217-1223
[7]   In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver [J].
Bos, C ;
Delmas, Y ;
Desmoulière, A ;
Solanilla, A ;
Hauger, O ;
Grosset, C ;
Dubus, I ;
Ivanovic, Z ;
Rosenbaum, J ;
Charbord, P ;
Combe, C ;
Bulte, JWM ;
Moonen, CTW ;
Ripoche, J ;
Grenier, N .
RADIOLOGY, 2004, 233 (03) :781-789
[8]   Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J].
Bulte, JWM ;
Douglas, T ;
Witwer, B ;
Zhang, SC ;
Strable, E ;
Lewis, BK ;
Zywicke, H ;
Miller, B ;
van Gelderen, P ;
Moskowitz, BM ;
Duncan, ID ;
Frank, JA .
NATURE BIOTECHNOLOGY, 2001, 19 (12) :1141-1147
[9]   Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides [J].
Bulte, JWM ;
Kraitchman, DL ;
Mackay, AM ;
Pittenger, MF .
BLOOD, 2004, 104 (10) :3410-3412
[10]   Iron oxide MR contrast agents for molecular and cellular imaging [J].
Bulte, JWM ;
Kraitchman, DL .
NMR IN BIOMEDICINE, 2004, 17 (07) :484-499