Convolutional neural network performance compared to radiologists in detecting intracranial hemorrhage from brain computed tomography: A systematic review and meta-analysis

被引:21
作者
Jorgensen, Mia Daugaard [1 ]
Antulov, Ronald [2 ,3 ]
Hess, Soren [2 ,3 ]
Lysdahlgaard, Simon [2 ,3 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Copenhagen, Denmark
[2] Univ Hosp Southern Denmark, Hosp South West Jutland, Dept Radiol & Nucl Med, Esbjerg, Denmark
[3] Univ Southern Denmark, Fac Hlth Sci, Dept Reg Hlth Res, Odense, Denmark
关键词
Computed tomography; Intracranial hemorrhage; Artificial Intelligence; Systematic review; Meta-analysis; DEEP-LEARNING ALGORITHM; ACCURACY;
D O I
10.1016/j.ejrad.2021.110073
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To compare the diagnostic accuracy of convolutional neural networks (CNN) with radiologists as the reference standard in the diagnosis of intracranial hemorrhages (ICH) with non contrast computed tomography of the cerebrum (NCTC). Methods: PubMed, Embase, Scopus, and Web of Science were searched for the period from 1 January 2012 to 20 July 2020; eligible studies included patients with and without ICH as the target condition undergoing NCTC, studies had deep learning algorithms based on CNNs and radiologists reports as the minimum reference standard. Pooled sensitivities, specificities and a summary receiver operating characteristics curve (SROC) were employed for meta-analysis. Results: 5,119 records were identified through database searching. Title-screening left 47 studies for full-text assessment and 6 studies for meta-analysis. Comparing the CNN performance to reference standards in the retrospective studies found a pooled sensitivity of 96.00% (95% CI: 93.00% to 97.00%), pooled specificity of 97.00% (95% CI: 90.00% to 99.00%) and SROC of 98.00% (95% CI: 97.00% to 99.00%), and combining retrospective and studies with external datasets found a pooled sensitivity of 95.00% (95% CI: 91.00% to 97.00%), pooled specificity of 96.00% (95% CI: 91.00% to 98.00%) and a pooled SROC of 98.00% (95% CI: 97.00% to 99.00%). Conclusion: This review found the diagnostic performance of CNNs to be equivalent to that of radiologists for retrospective studies. Out-of-sample external validation studies pooled with retrospective studies found CNN performance to be slightly worse. There is a critical need for studies with a robust reference standard and external data-set validation.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial [J].
Anderson, Craig S. ;
Huang, Yining ;
Wang, Ji Guang ;
Arima, Hisatomi ;
Neal, Bruce ;
Peng, Bin ;
Heeley, Emma ;
Skulina, Christian ;
Parsons, Mark W. ;
Kim, Jong Sung ;
Tao, Qing Ling ;
Li, Yue Chun ;
Jiang, Jian Dong ;
Tai, Li Wen ;
Zhang, Jin Li ;
Xu, En ;
Cheng, Yan ;
Heritier, Stephan ;
Morgenstern, Lewis B. ;
Chalmers, John .
LANCET NEUROLOGY, 2008, 7 (05) :391-399
[2]   Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration [J].
Arbabshirani, Mohammad R. ;
Fornwalt, Brandon K. ;
Mongelluzzo, Gino J. ;
Suever, Jonathan D. ;
Geise, Brandon D. ;
Patel, Aalpen A. ;
Moore, Gregory J. .
NPJ DIGITAL MEDICINE, 2018, 1
[3]   Artifacts in CT: Recognition and avoidance [J].
Barrett, JF ;
Keat, N .
RADIOGRAPHICS, 2004, 24 (06) :1679-1691
[4]   Impact of artificial intelligence on radiology: a EuroAIM survey among members of the European Society of Radiology [J].
Brkljacic, Boris ;
Derchi, Lorenzo E. ;
Hamm, Bernd ;
Fuchsjager, Michael ;
Krestin, Gabriel ;
Dewey, Marc ;
Parizel, Paul ;
Clark, Jonathan ;
Codari, Marina ;
Melazzini, Luca ;
Morozov, Sergey P. ;
van Kuijk, Cornelis C. ;
Sconfienza, Luca M. ;
Sardanelli, Francesco .
INSIGHTS INTO IMAGING, 2019, 10 (01)
[5]   Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT [J].
Chang, P. D. ;
Kuoy, E. ;
Grinband, J. ;
Weinberg, B. D. ;
Thompson, M. ;
Homo, R. ;
Chen, J. ;
Abcede, H. ;
Shafie, M. ;
Sugrue, L. ;
Filippi, C. G. ;
Su, M. -Y. ;
Yu, W. ;
Hess, C. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) :1609-1616
[6]   Addressing Burnout in Radiologists [J].
Chetlen, Alison L. ;
Chan, Tiffany L. ;
Ballard, David H. ;
Frigini, L. Alexandre ;
Hildebrand, Andrea ;
Kim, Shannon ;
Brian, James M. ;
Krupinski, Elizabeth A. ;
Ganeshan, Dhakshinamoorthy .
ACADEMIC RADIOLOGY, 2019, 26 (04) :526-533
[7]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
[9]   Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET [J].
Domingues, Ines ;
Pereira, Gisele ;
Martins, Pedro ;
Duarte, Hugo ;
Santos, Joao ;
Abreu, Pedro Henriques .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (06) :4093-4160
[10]  
Elliott J., 2010, ANESTH ANALG, DOI [10.1213/ANE.0b013-3181d568c8, DOI 10.1213/ANE.0B013-3181D568C8]