Adjustment of the microstructure and selected mechanical properties of biomedical Ti-15Zr-Mo alloys through oxygen doping

被引:22
作者
Correa, D. R. N. [1 ,2 ,3 ]
Kuroda, P. A. B. [2 ,3 ]
Lourenco, M. L. [2 ,3 ]
Buzalaf, M. A. R. [4 ]
Grandini, C. R. [2 ,3 ]
机构
[1] IFSP Fed Inst Educ Sci & Technol Sao Paulo, Grp Pesquisa Mat Met Avancados, BR-18095410 Sorocaba, SP, Brazil
[2] Univ Estadual Paulista, UNESP, Lab Anelasticidade & Biomat, BR-17033360 Bauru, SP, Brazil
[3] Inst Biomat Tribocorros & Nanomed, Brazilian Branch, IBTN Br, BR-17033360 Bauru, SP, Brazil
[4] Univ Sao Paulo, Fac Odontol, Dept Ciencias Biol, BR-17012901 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Biomaterial; Ti alloy; Oxygen; Microstructure; Hardness; Young's modulus; CORROSION BEHAVIOR; PHASE-STABILITY; DIFFUSION; CYTOCOMPATIBILITY; BIOCOMPATIBILITY; MODULUS;
D O I
10.1016/j.jallcom.2018.10.105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigated the effect of oxygen doping on the crystalline structure, microstructure, and selected mechanical properties (Vickers microhardness, Young's modulus and internal friction) of Ti15Zr-xMo (x = 5, 7.5, 10, 15 and 20 wt%) alloys for use as biomaterials. The monitoring of oxygen pressure along with the doping treatment indicated that the interstitial element was successfully absorbed into the samples. Results showed that oxygen content slightly altered the alpha ''/beta phase proportion and 13 phase crystalline parameter without abruptly changing their microstructure. Moreover, the selected mechanical properties suffered variations in a non-linear manner. Oxygen content was found to be suitable to produce small variations in the microstructure and in the selected properties of biomedical Ti alloys, keeping the main composition unchanged. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 44 条
  • [1] General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters
    Abdel-Hady, Mohamed
    Hinoshita, Keita
    Morinaga, Masahiko
    [J]. SCRIPTA MATERIALIA, 2006, 55 (05) : 477 - 480
  • [2] [Anonymous], 2009, E187609 ASTM INT
  • [3] [Anonymous], 2012, J APPL PHYS, DOI DOI 10.1063/1.3677761
  • [4] [Anonymous], 2011, E38411E1 ASTM INT
  • [5] Perspectives on Titanium Science and Technology
    Banerjee, Dipankar
    Williams, J. C.
    [J]. ACTA MATERIALIA, 2013, 61 (03) : 844 - 879
  • [6] Structure of orthorhombic martensitic phase in binary Ti-Nb alloys
    Banumathy, S.
    Mandal, R. K.
    Singh, A. K.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
  • [7] Blanter MS, 2007, SPRINGER SER MATER S, V90, pVII, DOI 10.1007/978-3-540-68758-0
  • [8] Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices
    Correa, D. R. N.
    Kuroda, P. A. B.
    Lourenco, M. L.
    Fernandes, C. J. C.
    Buzalaf, M. A. R.
    Zambuzzi, W. F.
    Grandini, C. R.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 : 163 - 171
  • [9] Tribocorrosion behavior of β-type Ti-15Zr-based alloys
    Correa, D. R. N.
    Kuroda, P. A. B.
    Grandini, C. R.
    Rocha, L. A.
    Oliveira, F. G. M.
    Alves, A. C.
    Toptan, F.
    [J]. MATERIALS LETTERS, 2016, 179 : 118 - 121
  • [10] Correa D. R. N., 2015, EFEITO ELEMENTOS SUB, P134