The design of soft recoding-based strategies for improving error-correcting output codes

被引:3
作者
Liu, Kun-Hong [1 ]
Ye, Xiao-Na [1 ]
Guo, Hong-Zhou [1 ]
Wu, Qing-Qiang [1 ]
Hong, Qing-Qi [1 ]
机构
[1] Xiamen Univ, Sch Informat, 422 Siming South Rd, Xiamen, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Error-Correcting Output Codes (ECOC); Soft recoding; Multiclass classification; Learner dependent; DYNAMIC ENSEMBLE SELECTION; CANCER-DIAGNOSIS; CLASSIFICATION; ECOC; PREDICTION; DISCOVERY; ALGORITHM; MATRIX;
D O I
10.1007/s10489-021-02870-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many Error-Correcting Output Codes (ECOC) algorithms had been proposed based on the hard coding (HC) schemes: binary coding {1, 0} or ternary coding {+1, -1, 0}. This paper introduces two novel strategies to recode the original code matrices with the mean values and the intervals of learners' outputs, which are named Mean Value Recoding (MVR) and Interval Recoding (IR) strategies. Both strategies are designed to reduce the distance between the outputs of base learners and the target codewords, aiming to produce more accurate results compared with the HC schemes. It is the first time that two concepts, soft recoding, and learner dependent, are injected into the ECOC framework to the best of our knowledge. To verify the effectiveness of our strategies, four data-independent ECOC algorithms and two data-dependent ECOC algorithms are deployed in the experiments based on UCI data sets. The experiments are carried out using the original HC strategies and our soft recoding strategies, and results verify that our strategies outperform the HC-based algorithms in most cases by producing balanced results among classes. In short, our strategies can improve the performance of different ECOC algorithms. Our python code and the corresponding data sets are available for non-commercial or research use at: https://github.com/MLDMXM2017/softcoding-ECOC.
引用
收藏
页码:8856 / 8873
页数:18
相关论文
共 52 条
[1]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[2]   A genetic-based subspace analysis method for improving Error-Correcting Output Coding [J].
Bagheri, Mohammad Ali ;
Gao, Qigang ;
Escalera, Sergio .
PATTERN RECOGNITION, 2013, 46 (10) :2830-2839
[3]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[4]   Deep Belief Network and Auto-Encoder for Face Classification [J].
Bouchra, Nassih ;
Aouatif, Amine ;
Mohammed, Ngadi ;
Nabil, Hmina .
INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (05) :22-29
[5]  
Choudhary Alpa, 2018, Procedia Computer Science, V132, P1781, DOI 10.1016/j.procs.2018.05.153
[6]   On the learnability and design of output codes for multiclass problems [J].
Crammer, K ;
Singer, Y .
MACHINE LEARNING, 2002, 47 (2-3) :201-233
[7]  
Dietterich T. G., 1995, Journal of Artificial Intelligence Research, V2, P263
[8]  
Dua D., 2019, UCI Machine Learning Repository
[9]  
Escalera S, 2006, INT C PATT RECOG, P578
[10]   On the Decoding Process in Ternary Error-Correcting Output Codes [J].
Escalera, Sergio ;
Pujol, Oriol ;
Radeva, Petia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (01) :120-134