Asymptotic properties of steady solutions to the 3D axisymmetric Navier-Stokes equations with no swirl

被引:4
作者
Kozono, Hideo [1 ,2 ]
Terasawa, Yutaka [3 ]
Wakasugi, Yuta [4 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Sendai, Miyagi 9808578, Japan
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[4] Hiroshima Univ, Grad Sch Sci & Engn, Higashihiroshima 7398527, Japan
关键词
Axisymmetric Navier-Stokes equations; No swirl; Asymptotic behavior; Liouville-type theorems; LIOUVILLE-TYPE THEOREMS; SYMMETRIC D-SOLUTIONS; DECAY;
D O I
10.1016/j.jfa.2021.109289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of axisymmetric solutions with no swirl to the steady Navier-Stokes equations in the outside of the cylinder. We prove an a priori decay estimate of the vorticity under the assumption that the velocity has generalized finite Dirichlet integral. As an application, we obtain a Liouville-type theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 32 条
[21]   Exterior problem for the stationary Navier-Stokes equations in the Lorentz space [J].
Kozono, H ;
Yamazaki, M .
MATHEMATISCHE ANNALEN, 1998, 310 (02) :279-305
[22]   A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions [J].
Kozono, Hideo ;
Terasawa, Yutaka ;
Wakasugi, Yuta .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) :804-818
[23]  
Lei Z., ARXIV170100868V1
[24]  
Leray J, 1933, J MATH PURE APPL, V12, P1
[25]  
Li Z., ARXIV200310087V1
[26]   CHARACTERIZATION AND REGULARITY FOR AXISYMMETRIC SOLENOIDAL VECTOR FIELDS WITH APPLICATION TO NAVIER-STOKES EQUATION [J].
Liu, Jian-Guo ;
Wang, Wei-Cheng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) :1825-1850
[27]  
Novotny A, 1995, DIFFER INTEGRAL EQU, V8, P1833
[28]   Liouville theorem of axially symmetric Navier-Stokes equations with growing velocity at infinity [J].
Pan, Xinghong ;
Li, Zijin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 56
[29]   Liouville type theorem for stationary Navier-Stokes equations [J].
Seregin, G. .
NONLINEARITY, 2016, 29 (08) :2191-2195
[30]  
Wang W., ARXIV190305989V2