Asymptotic properties of steady solutions to the 3D axisymmetric Navier-Stokes equations with no swirl

被引:4
作者
Kozono, Hideo [1 ,2 ]
Terasawa, Yutaka [3 ]
Wakasugi, Yuta [4 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Sendai, Miyagi 9808578, Japan
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[4] Hiroshima Univ, Grad Sch Sci & Engn, Higashihiroshima 7398527, Japan
关键词
Axisymmetric Navier-Stokes equations; No swirl; Asymptotic behavior; Liouville-type theorems; LIOUVILLE-TYPE THEOREMS; SYMMETRIC D-SOLUTIONS; DECAY;
D O I
10.1016/j.jfa.2021.109289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of axisymmetric solutions with no swirl to the steady Navier-Stokes equations in the outside of the cylinder. We prove an a priori decay estimate of the vorticity under the assumption that the velocity has generalized finite Dirichlet integral. As an application, we obtain a Liouville-type theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 32 条
[1]   ON LERAYS PROBLEM OF STEADY NAVIER-STOKES FLOW PAST A BODY IN THE PLANE [J].
AMICK, CJ .
ACTA MATHEMATICA, 1988, 161 (1-2) :71-130
[2]  
Babenko K.I., 1973, Mathematics of the USSR-Sbornik, V20, P1
[3]   ALGEBRAIC L2 DECAY FOR NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1990, 165 (3-4) :189-227
[4]   Decay and Vanishing of some D-Solutions of the Navier-Stokes Equations [J].
Carrillo, Bryan ;
Pan, Xinghong ;
Zhang, Qi S. ;
Zhao, Na .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) :1383-1419
[5]   Decay and vanishing of some axially symmetric D-solutions of the Navier-Stokes equations [J].
Carrillo, Bryan ;
Pan, Xinghong ;
Zhang, Qi S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (01)
[6]  
Chae D, ARXIV150204793V1
[7]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[8]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[9]   Asymptotic Properties of Axis-Symmetric D-Solutions of the Navier-Stokes Equations [J].
Choe, Hi Jun ;
Jin, Bum Ja .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (02) :208-232