Cubic theta functions

被引:13
作者
Cooper, S [1 ]
机构
[1] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand
关键词
cubic theta functions; modular transformation; Dedekind eta function;
D O I
10.1016/S0377-0427(03)00614-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new identities for the four cubic theta functions a'(q,z), a(q,z), b(q,z) and c(q,z) are given. For example, we show that a'(q,z)(3) = b(q,z)(3) + c(q)(2)c(q,z). This is a counterpart of the identity a(q,z)(3) = b(q)(2)b(q,z(3)) + c(q,z)(3), which was found by Hirschhorn et al. The Laurent series expansions of the four cubic theta functions are given. Their transformation properties are established using an elementary approach due to K. Venkatachaliengar. By applying the modular transformation to the identities given by Hirschhorn et al., several new identities in which a'(q,z) plays the role of a(q,z) are obtained. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 16 条
[1]  
BERNDT B, 1998, RAMANUJANS NOTEBOO 5
[2]  
Berndt B. C., 1991, Ramanujan's Notebooks
[3]   RAMANUJANS THEORIES OF ELLIPTIC FUNCTIONS TO ALTERNATIVE BASES [J].
BERNDT, BC ;
BHARGAVA, S ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4163-4244
[4]   UNIFICATION OF THE CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION [J].
BHARGAVA, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (02) :543-558
[5]   SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN [J].
BORWEIN, JM ;
BORWEIN, PB ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (01) :35-47
[6]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[7]  
Conway J., 2010, Sphere Packings, Lattices and Groups, DOI DOI 10.1007/978-1-4757-2016-7
[8]  
COOPER S, 2001, P INT C WORKS S RAM, P81
[9]  
COOPER S, 2001, CONT MATH, V291, P115
[10]   CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q) [J].
HIRSCHHORN, M ;
GARVAN, F ;
BORWEIN, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04) :673-694