Enhanced Higgs Boson to τ+τ- Search with Deep Learning

被引:77
作者
Baldi, P. [1 ]
Sadowski, P. [1 ]
Whiteson, D. [2 ]
机构
[1] UC Irvine, Dept Comp Sci, Irvine, CA 92617 USA
[2] UC Irvine, Dept Phys & Astron, Irvine, CA 92617 USA
关键词
Deep neural networks - Bosons;
D O I
10.1103/PhysRevLett.114.111801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5 sigma significance barrier without more data. Deep learning techniques have the potential to increase the statistical power of this analysis by automatically learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs boson to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight nonlinear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated data set of 25%.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider
    Aad, G.
    Abajyan, T.
    Abbott, B.
    Abdallah, J.
    Khalek, S. Abdel
    Abdelalim, A. A.
    Abdinov, O.
    Aben, R.
    Abi, B.
    Abolins, M.
    AbouZeid, O. S.
    Abramowicz, H.
    Abreu, H.
    Acharya, B. S.
    Adamczyk, L.
    Adams, D. L.
    Addy, T. N.
    Adelman, J.
    Adomeit, S.
    Adragna, P.
    Adye, T.
    Aefsky, S.
    Aguilar-Saavedra, J. A.
    Agustoni, M.
    Aharrouche, M.
    Ahlen, S. P.
    Ahles, F.
    Ahmad, A.
    Ahsan, M.
    Aielli, G.
    Akdogan, T.
    Akesson, T. P. A.
    Akimoto, G.
    Akimov, A. V.
    Alam, M. S.
    Alam, M. A.
    Albert, J.
    Albrand, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alessandria, F.
    Alexa, C.
    Alexander, G.
    Alexandre, G.
    Alexopoulos, T.
    Alhroob, M.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Allbrooke, B. M. M.
    [J]. SCIENCE, 2012, 338 (6114) : 1576 - 1582
  • [2] MadGraph 5: going beyond
    Alwall, Johan
    Herquet, Michel
    Maltoni, Fabio
    Mattelaer, Olivier
    Stelzer, Tim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06):
  • [3] [Anonymous], ARXIV13084214
  • [4] [Anonymous], 2010, P PYTHON SCI COMPUTI
  • [5] [Anonymous], 2012, ADV NEURAL INFORM PR, DOI DOI 10.5555/2999325.2999464
  • [6] [Anonymous], ARXIV12070580
  • [7] Searching for exotic particles in high-energy physics with deep learning
    Baldi, P.
    Sadowski, P.
    Whiteson, D.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [8] The dropout learning algorithm
    Baldi, Pierre
    Sadowski, Peter
    [J]. ARTIFICIAL INTELLIGENCE, 2014, 210 : 78 - 122
  • [9] LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT
    BENGIO, Y
    SIMARD, P
    FRASCONI, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02): : 157 - 166
  • [10] A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider
    Chatrchyan, S.
    Khachatryan, V.
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Aguilo, E.
    Bergauer, T.
    Dragicevic, M.
    Eroe, J.
    Fabjan, C.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hoch, M.
    Hoermann, N.
    Hrubec, J.
    Jeitler, M.
    Kiesenhofer, W.
    Knuenz, V.
    Krammer, M.
    Kraetschmer, I.
    Liko, D.
    Majerotto, W.
    Mikulec, I.
    Pernicka, M.
    Rahbaran, B.
    Rohringer, C.
    Rohringer, H.
    Schoefbeck, R.
    Strauss, J.
    Szoncso, F.
    Taurok, A.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C. -E.
    Chekhovsky, V.
    Emeliantchik, I.
    Litomin, A.
    Makarenko, V.
    Mossolov, V.
    Shumeiko, N.
    Solin, A.
    Stefanovitch, R.
    Gonzalez, J. Suarez
    Fedorov, A.
    Korzhik, M.
    Missevitch, O.
    Zuyeuski, R.
    Bansal, M.
    [J]. SCIENCE, 2012, 338 (6114) : 1569 - 1575