Non-Hermitian Chern Bands

被引:751
作者
Yao, Shunyu [1 ]
Song, Fei [1 ]
Wang, Zhong [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
关键词
PARITY-TIME SYMMETRY; EXCEPTIONAL POINTS; PSEUDO-HERMITICITY; BOUND-STATES; HAMILTONIANS; MODEL; BULK;
D O I
10.1103/PhysRevLett.121.136802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relation between chiral edge modes and bulk Chern numbers of quantum Hall insulators is a paradigmatic example of bulk-boundary correspondence. We show that the chiral edge modes are not strictly tied to the Chern numbers defined by a non-Hermitian Bloch Hamiltonian. This breakdown of conventional bulk-boundary correspondence stems from the non-Bloch-wave behavior of eigenstates (non-Hermitian skin effect), which generates pronounced deviations of phase diagrams from the Bloch theory. We introduce non-Bloch Chern numbers that faithfully predict the numbers of chiral edge modes. The theory is backed up by the open-boundary energy spectra, dynamics, and phase diagram of representative lattice models. Our results highlight a unique feature of non-Hermitian bands and suggest a non-Bloch framework to characterize their topology.
引用
收藏
页数:8
相关论文
共 95 条
[1]   Parity-time-symmetric quantum critical phenomena [J].
Ashida, Yuto ;
Furukawa, Shunsuke ;
Ueda, Masahito .
NATURE COMMUNICATIONS, 2017, 8
[2]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]  
Bernevig B. A., 2013, Topological Insulators and Topological Superconductors
[6]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[7]   Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics [J].
Cao, Hui ;
Wiersig, Jan .
REVIEWS OF MODERN PHYSICS, 2015, 87 (01) :61-111
[8]   QUANTUM TRAJECTORY THEORY FOR CASCADED OPEN SYSTEMS [J].
CARMICHAEL, HJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2273-2276
[9]   Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges [J].
Cerjan, Alexander ;
Xiao, Meng ;
Yuan, Luqi ;
Fan, Shanhui .
PHYSICAL REVIEW B, 2018, 97 (07)
[10]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170