Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids

被引:23
|
作者
Yousefi, Fakhri [1 ]
Mohammadiyan, Somayeh [1 ]
Karimi, Hajir [2 ]
机构
[1] Univ Yasuj, Dept Chem, Yasuj 75914353, Iran
[2] Univ Yasuj, Dept Chem Engn, Yasuj 75914353, Iran
关键词
EQUATION-OF-STATE; HEAT-TRANSFER; ETHYLENE-GLYCOL; VOLUMETRIC PROPERTIES; PARTICLE-SIZE; ENHANCEMENT; TRANSPORT; MIXTURE; TEMPERATURE; SUSPENSIONS;
D O I
10.1007/s00231-015-1730-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper applies a model including back-propagation network (BPN) and principal component analysis (PCA) to compute the effective thermal conductivities of nanofluids such as Al2O3/(60:40)EG:H2O, Al2O3/W, Al2O3/(20:80)EG:W, Al2O3/(50:50)EG:W, ZnO/(60:40) EG:W, CuO/(60:40)EG:W, CuO/W, CuO/(50:50)EG:W, TiO2/W, TiO2/(20:80)EG:W, Fe3O4/(20:80) EG:W, Fe3O4/(60:40) EG:W, Fe3O4/(40:60) EG:W and Fe3O4/W, as a function of the temperature, thermal conductivity of nano particle, volume fraction of nanoparticle, diameter of nanoparticle and the thermal conductivity of base fluids. The obtained results by BPN-PCA model have good agreement with the experimental data with absolute average deviation and high correlation coefficients 1.47 % and 0.9942, respectively.
引用
收藏
页码:2141 / 2154
页数:14
相关论文
共 50 条
  • [41] A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids
    Kihm, Kenneth D.
    Chon, Chan Hee
    Lee, Joon Sik
    Choi, Stephen U. S.
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 9
  • [42] Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data
    Hemmat Esfe, Mohammad
    Afrand, Masoud
    Yan, Wei-Mon
    Akbari, Mohammad
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2015, 66 : 246 - 249
  • [43] A semi-experimental model to predict the thermal conductivity coefficient of nanofluids
    Shahrivar, Iraj
    Niazi, Zahra
    Khoshoei, Azadeh
    Ghafouri, Ashkan
    HEAT AND MASS TRANSFER, 2022, 58 (05) : 791 - 799
  • [44] Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids
    Kim, Hyun Jin
    Lee, Seung-Hyun
    Lee, Ji-Hwan
    Jang, Seok Pil
    ENERGY, 2015, 90 : 1290 - 1297
  • [46] Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior
    Meng, Zhaoguo
    Wu, Daxiong
    Wang, Liangang
    Zhu, Haitao
    Li, Qingling
    PARTICUOLOGY, 2012, 10 (05) : 614 - 618
  • [47] A new model to predict the densities of nanofluids using statistical mechanics and artificial intelligent plus principal component analysis
    Yousefi, F.
    Amoozandeh, Z.
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2017, 25 (09) : 1273 - 1281
  • [48] Thermal Conductivity of Cu-Zn Hybrid Newtonian Nanofluids: Experimental Data and Modeling using Neural Network
    Mechiri, Sandeep Kumar
    Vasu, V.
    Gopal, Venu A.
    Babu, Satish R.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL HEAT AND MASS TRANSFER (ICCHMT) - 2015, 2015, 127 : 561 - 567
  • [49] INCORPORATING CFD AND ARTIFICIAL NEURAL NETWORK METHODS TO PREDICT THERMAL CHARACTERISTICS OF FLOW THROUGH PIPES
    Darbandi, Masoud
    Abdollahpour, Mohammad-Saleh
    Khalili, Amir-Hossein
    Schneider, Gerry E.
    8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 419 - 427
  • [50] Application of Artificial Neural Network Model to Predict Limiting Current for cobalt Magneto-Electrodeposition
    Sudibyo
    Handoko, A. S.
    Herlina, U.
    Aziz, N.
    Sukma, Y. A.
    PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM 2019): EXPLORING NEW INNOVATION IN METALLURGY AND MATERIALS, 2020, 2232