Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids

被引:23
|
作者
Yousefi, Fakhri [1 ]
Mohammadiyan, Somayeh [1 ]
Karimi, Hajir [2 ]
机构
[1] Univ Yasuj, Dept Chem, Yasuj 75914353, Iran
[2] Univ Yasuj, Dept Chem Engn, Yasuj 75914353, Iran
关键词
EQUATION-OF-STATE; HEAT-TRANSFER; ETHYLENE-GLYCOL; VOLUMETRIC PROPERTIES; PARTICLE-SIZE; ENHANCEMENT; TRANSPORT; MIXTURE; TEMPERATURE; SUSPENSIONS;
D O I
10.1007/s00231-015-1730-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper applies a model including back-propagation network (BPN) and principal component analysis (PCA) to compute the effective thermal conductivities of nanofluids such as Al2O3/(60:40)EG:H2O, Al2O3/W, Al2O3/(20:80)EG:W, Al2O3/(50:50)EG:W, ZnO/(60:40) EG:W, CuO/(60:40)EG:W, CuO/W, CuO/(50:50)EG:W, TiO2/W, TiO2/(20:80)EG:W, Fe3O4/(20:80) EG:W, Fe3O4/(60:40) EG:W, Fe3O4/(40:60) EG:W and Fe3O4/W, as a function of the temperature, thermal conductivity of nano particle, volume fraction of nanoparticle, diameter of nanoparticle and the thermal conductivity of base fluids. The obtained results by BPN-PCA model have good agreement with the experimental data with absolute average deviation and high correlation coefficients 1.47 % and 0.9942, respectively.
引用
收藏
页码:2141 / 2154
页数:14
相关论文
共 50 条
  • [1] Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
    Longo, Giovanni A.
    Zilio, Claudio
    Ceseracciu, Elena
    Reggiani, Monica
    NANO ENERGY, 2012, 1 (02) : 290 - 296
  • [2] Modeling of thermal diffusivity of nanofluids using artificial neural network
    Yousefi, Fakhri
    Parsazadeh, Nadieh
    HIGH TEMPERATURES-HIGH PRESSURES, 2017, 46 (06) : 459 - 480
  • [3] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [4] ReD-dependence of dynamic thermal conductivities of nanofluids
    Na, Y. S.
    Kihm, K. D.
    Lee, J. S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (25-26) : 7933 - 7940
  • [5] Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network
    Hojjat, M.
    Etemad, S. Gh.
    Bagheri, R.
    Thibault, J.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (5-6) : 1017 - 1023
  • [6] Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks
    Ariana, M. A.
    Vaferi, B.
    Karimi, G.
    POWDER TECHNOLOGY, 2015, 278 : 1 - 10
  • [7] Prediction of Thermal Conductivity of Various Nanofluids with Ethylene Glycol using Artificial Neural Network
    Wang, Xuehui
    Yan, Xiaona
    Gao, Neng
    Chen, Guangming
    JOURNAL OF THERMAL SCIENCE, 2020, 29 (06) : 1504 - 1512
  • [8] Nanodiamond-Fe3O4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities
    Syam Sundar, L.
    Venkata Ramana, E.
    Graca, M. P. F.
    Singh, Manoj K.
    Sousa, Antonio C. M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 73 : 62 - 74
  • [9] Development of a neural architecture to predict the thermal conductivity of nanofluids
    Shahrivar, Iraj
    Ghafouri, Ashkan
    Niazi, Zahra
    Khoshoei, Azadeh
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (12)
  • [10] Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids
    Zhao, Ningbo
    Li, Zhiming
    MATERIALS, 2017, 10 (05):