A Gradient Bound for Free Boundary Graphs

被引:12
作者
De Silva, Daniela [1 ]
Jerison, David [2 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
REGULARITY; INEQUALITY; EXISTENCE; EQUATIONS;
D O I
10.1002/cpa.20354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analogue for a one-phase free boundary problem of the classical gradient bound for solutions to the minimal surface equation. It follows, in particular, that every energy-minimizing free boundary that is a graph is also smooth. The method we use also leads to a new proof of the classical minimal surface gradient bound. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:538 / 555
页数:18
相关论文
共 15 条
[1]  
AGUILERA NE, 1987, ANN SC NORM SUPER PI, V14, P355
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]  
[Anonymous], 2005, A geometric approach to free boundary problems
[4]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[5]   HARNACKS INEQUALITY FOR ELLIPTIC DIFFERENTIAL EQUATIONS ON MINIMAL SURFACES [J].
BOMBIERI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1972, 15 (01) :24-&
[6]   A PRIORI MAJORATION RELATING TO NON-PARAMETRICAL MINIMAL HYPERSURFACES [J].
BOMBIERI, E ;
DEGIORGI, E ;
MIRANDA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 32 (04) :255-&
[7]  
Caffarelli L.A., 1987, Rev. Mat. Iberoamericana, V3, P139
[9]   Bernstein-type techniques for 2D free boundary graphs [J].
De Silva, Daniela .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (01) :47-60
[10]   A singular energy minimizing free boundary [J].
De Silva, Daniela ;
Jerison, David .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 :1-21