Subwavelength grating enabled on-chip ultra-compact optical true time delay line

被引:76
|
作者
Wang, Junjia [1 ]
Ashrafi, Reza [1 ]
Adams, Rhys [2 ]
Glesk, Ivan [3 ]
Gasulla, Ivana [4 ]
Capmany, Jose [4 ]
Chen, Lawrence R. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
[2] CEGEP Vanier Coll, Dept Phys, Montreal, PQ H4L 3X9, Canada
[3] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XU, Lanark, Scotland
[4] Univ Politecn Valencia, ITEAM Res Inst, E-46022 Valencia, Spain
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
WAVE-GUIDE; TUNABLE DELAY; BRAGG GRATINGS; RESONATORS; INSULATOR; COUPLERS; DESIGN;
D O I
10.1038/srep30235
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit
    Burla, Maurizio
    Cortes, Luis Romero
    Li, Ming
    Wang, Xu
    Chrostowski, Lukas
    Azana, Jose
    OPTICS LETTERS, 2014, 39 (21) : 6181 - 6184
  • [42] Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer
    YULONG FAN
    XAVIER LE ROUX
    ANATOLE LUPU
    ANDR DE LUSTRAC
    Photonics Research, 2019, 7 (03) : 359 - 362
  • [43] Ultra-compact on-chip silicon photonics isolator designed using modified genetic algorithm
    Ran, Chongchong
    Wu, Mingjie
    Zeng, Yongcan
    Wu, Zhengmao
    Yang, Junbo
    Wu, Jiagui
    ACTA PHYSICA SINICA, 2025, 74 (04)
  • [44] An ultra-compact and low insertion loss 60 GHz CMOS on-chip bandpass filter
    Zeng, Junjie
    Li, Xiuping
    Feng, Weiwei
    Zhu, Hua
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2018, 60 (12) : 3050 - 3053
  • [45] Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer
    YULONG FAN
    XAVIER LE ROUX
    ANATOLE LUPU
    ANDRé DE LUSTRAC
    Photonics Research, 2019, (03) : 359 - 362
  • [46] Ultra-Compact On-Chip Silicon Photonic Polarization- and Wavelength-Selective Switch
    Liu, Siwei
    Huo, Yujie
    Cheng, Chuang
    Niu, Jiaqi
    Fu, Xin
    Yang, Lin
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (24) : 8793 - 8801
  • [47] Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer
    Fan, Yulong
    Le Roux, Xavier
    Lupu, Anatole
    de Lustrac, Andre
    PHOTONICS RESEARCH, 2019, 7 (03) : 359 - 362
  • [48] Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects
    Xia, Fengnian
    Rooks, Mike
    Sekaric, Lidija
    Vlasov, Yurii
    OPTICS EXPRESS, 2007, 15 (19) : 11934 - 11941
  • [49] High resolution on-chip optical filter array based on double subwavelength grating reflectors
    Horie, Yu
    Arbabi, Amir
    Han, Seunghoon
    Faraon, Andrei
    OPTICS EXPRESS, 2015, 23 (23): : 29848 - 29854
  • [50] On-Chip Compact Surface Acoustic Wave Topological Delay Line Design
    Sun Yipeng
    Wang Jiqian
    Zhu Jianjun
    Meng Wei
    Wang Yuefei
    Hanlei
    2024 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY, RFIT, 2024,