QUANTUM ERGODICITY ON LARGE REGULAR GRAPHS

被引:50
作者
Anantharaman, Nalini [1 ]
Le Masson, Etienne [1 ]
机构
[1] Univ Paris 11, Math, Orsay, France
基金
美国国家科学基金会;
关键词
SEMICIRCLE LAW; DELOCALIZATION; EIGENFUNCTIONS; EIGENVALUES; CHAOS;
D O I
10.1215/00127094-2881592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a version of the quantum ergodicity theorem on large regular graphs of fixed valency. This is a property of delocalization of "most" eigenfunctions. We consider expander graphs with few short cycles (for instance random large regular graphs). Our method mimics the proof of quantum ergodicity on manifolds: it uses microlocal analysis on regular trees, as introduced by the second author in an earlier paper.
引用
收藏
页码:723 / 765
页数:43
相关论文
共 40 条
[1]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[2]  
[Anonymous], 1973, 7 INT TELEGRAFFIC C
[3]  
Benjamini I., 2001, Electronic J. Probab, V6
[4]   Quantum ergodicity for graphs related to interval maps [J].
Berkolaiko, G. ;
Keating, J. P. ;
Smilansky, U. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) :137-159
[5]   No quantum ergodicity for star graphs [J].
Berkolaiko, G ;
Keating, JP ;
Winn, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (02) :259-285
[6]  
Bollobas B., 2001, Random graphs, V73
[7]  
BOURGADE P., PREPRINT
[8]   Non-localization of eigenfunctions on large regular graphs [J].
Brooks, Shimon ;
Lindenstrauss, Elon .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 193 (01) :1-14
[9]   The range of the Helgason-Fourier transformation on homogeneous trees [J].
Cowling, M ;
Setti, AG .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (02) :237-246
[10]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497