Roles of alkali metal dopants and surface defects on polymeric carbon nitride in photocatalytic peroxymonosulfate activation towards water decontamination

被引:24
作者
Cui, Minshu [1 ,2 ]
Cui, Kangping [1 ,2 ]
Liu, Xueyan [1 ,2 ]
Chen, Xing [1 ,2 ]
Chen, Yihan [1 ,2 ]
Guo, Zhi [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Resources & Environm Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Key Lab Nanominerals & Pollut Control Higher Educ, Hefei 230009, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Water treatment; Photocatalysis; DFT calculations; Excited state; Electron localization function; SOLAR HYDROGEN-PRODUCTION; COBALT-DOPED G-C3N4; ADVANCED OXIDATION; H2O2; PRODUCTION; CHARGE-TRANSFER; DEGRADATION; PERSULFATE; LOCALIZATION; ANTIBIOTICS; COMPOSITE;
D O I
10.1016/j.jhazmat.2021.127292
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymeric carbon nitride (PCN) has been extensively employed in peroxymonosulfate (PMS) activation for water decontamination. However, limited photocatalytic efficiency can be achieved by pristine PCN due to its intrinsic deficiencies like high electron-hole recombination rate and resistance to charge transfer. Herein, in a two-stage thermal treatment process, the nontoxic and stable Na and K were successfully anchored among the PCN skeleton with surface defects created, leading to an elevated photocatalytic activity for PMS activation. The SO4.- and 1O2 were identified as the dominant reactive oxygen species, which were generated from electron transfer processes between PMS and catalyst. Experimental and theoretical analyses suggested that the defective structures and metal dopants improved the optical properties of catalyst, endowing it a wider light absorption range and a lower energy barrier for electron transitions. The modified structures were also beneficial to electron transfer processes due to the weaker electron confinement effect, accelerating the production of SO4- on the defective sites and 1O2 on the metal sites. The synergy of radical and non-radical species weakened the influence of side reactions between radicals from PMS and coexisting inorganic anions in practical water, hence to promote the resistance of modified catalysts in complex water matrices.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions [J].
Anipsitakis, GP ;
Dionysiou, DD ;
Gonzalez, MA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (03) :1000-1007
[2]   SPATIAL LOCALIZATION OF ELECTRONIC PAIR AND NUMBER DISTRIBUTIONS IN MOLECULES [J].
BADER, RFW ;
STEPHENS, ME .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (26) :7391-7399
[3]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants [J].
Chen, Congcong ;
Xie, Meng ;
Kong, Lingshuai ;
Lu, Wenhui ;
Feng, Zhenyu ;
Zhan, Jinhua .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 390
[6]   Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism [J].
Chen, Fei ;
Huang, Gui-Xiang ;
Yao, Fu-Bing ;
Yang, Qi ;
Zheng, Yu-Ming ;
Zhao, Quan-Bao ;
Yu, Han-Qing .
WATER RESEARCH, 2020, 173
[7]   Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review [J].
Chen, Guanyi ;
Yu, Yang ;
Liang, Lan ;
Duan, Xiaoguang ;
Li, Rui ;
Lu, Xukai ;
Yan, Beibei ;
Li, Ning ;
Wang, Shaobin .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 408
[8]   Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism [J].
Chen, Jiabin ;
Zhang, Liming ;
Huang, Tianyin ;
Li, Wenwei ;
Wang, Ying ;
Wang, Zhongming .
JOURNAL OF HAZARDOUS MATERIALS, 2016, 320 :571-580
[9]   Exciton Self-Trapping in sp2 Carbon Nanostructures Induced by Edge Ether Groups [J].
Chen, Shunwei ;
Ullah, Naeem ;
Zhang, Ruiqin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (17) :4857-4864
[10]   Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship [J].
Cheng, Xin ;
Guo, Hongguang ;
Zhang, Yongli ;
Korshin, Gregory V. ;
Yang, Bo .
WATER RESEARCH, 2019, 157 :406-414