Finite dimensional representations of invariant differential operators

被引:2
作者
Musson, IM [1 ]
Rueda, SL
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Politecn Madrid, Dept Matemat, E-28040 Madrid, Spain
基金
美国国家科学基金会;
关键词
D O I
10.1090/S0002-9947-04-03573-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic 0, Y = k(r) x (k(x))(s), and let G be an algebraic torus acting diagonally on the ring of algebraic differential operators D(Y). We give necessary and sufficient conditions for D(Y)(G) to have enough simple finite dimensional representations, in the sense that the intersection of the kernels of all the simple finite dimensional representations is zero. As an application we show that if K -> GL(V) is a representation of a reductive group K and if zero is not a weight of a maximal torus of K on V, then D(V)(K) has enough finite dimensional representations. We also construct examples of FCR-algebras with any integer GK dimension >= 3.
引用
收藏
页码:2739 / 2752
页数:14
相关论文
共 16 条
[1]  
ALEV J, 1986, LECT NOTES MATH, V1197, P1
[2]  
[Anonymous], 1985, RES NOTES MATH
[3]  
Coutinho S. C., 1995, PRIMER ALGEBRAIC D M
[4]  
Fulton W., 1993, INTRO TORIC VARIETIE
[5]   Examples of FCR-algebras [J].
Kirkman, EE ;
Small, LW .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3311-3326
[6]  
Kraft H, 1994, MATH RES LETT, V1, P297
[7]  
KRAFT H, 1984, GEOMETRISCHE METHODE
[8]  
LEVASSEUR T, 1989, MEM AM MATH SOC, V81, P1
[9]  
Luna D., 1973, Memoires de la Societe Mathematique de France, V33, P81