Quaternionic Lorentz group and Dirac equation

被引:13
作者
De Leo, S
机构
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
[2] Univ Lecce, Dept Phys, I-73100 Lecce, Italy
[3] Univ Lecce, Ist Nazl Fis Nucl, I-73100 Lecce, Italy
关键词
quaternions; Lorentz group; relativistic wave equations;
D O I
10.1023/A:1012077227985
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate Lorentz, group representations in which ordinary complex numbers are replaced by linear functions of real quaternions and introduce dotted and undotted quaternionic one-dimensional spinors. To extend to parity the space-time transformations, we combine these one-dimensional spinors into bi-dimensional column vectors. From the transformation properties of the two-component spinors, we derive a quaternionic chiral representation for the space-time algebra. Finally, we obtain a quaternionic bi-dimensional version of the Dirac equation.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 43 条
[1]  
ADLER S, 1994, NUCL PHYS B, V145, P195
[2]   Projective group representations in quaternionic Hilbert space [J].
Adler, SL .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2352-2360
[3]   COMPOSITE LEPTONS AND QUARKS CONSTRUCTED AS TRIPLY OCCUPIED QUASI-PARTICLES IN QUATERNIONIC QUANTUM-MECHANICS [J].
ADLER, SL .
PHYSICS LETTERS B, 1994, 332 (3-4) :358-365
[4]   SCATTERING AND DECAY THEORY FOR QUATERNIONIC QUANTUM-MECHANICS, AND THE STRUCTURE OF INDUCED T-NONCONSERVATION [J].
ADLER, SL .
PHYSICAL REVIEW D, 1988, 37 (12) :3654-3662
[5]   ALGEBRAIC AND GEOMETRIC ASPECTS OF GENERALIZED QUANTUM DYNAMICS [J].
ADLER, SL ;
WU, YS .
PHYSICAL REVIEW D, 1994, 49 (12) :6705-6708
[6]  
Adler SL., 1995, Quaternionic quantum mechanics and quantum fields
[7]  
[Anonymous], LOGICO ALGEBRAIC APP
[8]  
CONWAY AW, 1937, P ROY SOC, V162, P147
[9]  
CUYPERS F, 1997, 9703 PSI
[10]   OBSERVABILITY OF QUATERNIONIC QUANTUM-MECHANICS [J].
DAVIES, AJ ;
MCKELLAR, BHJ .
PHYSICAL REVIEW A, 1992, 46 (07) :3671-3675