Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications

被引:101
作者
Gopinathan, Janarthanan [1 ,2 ]
Noh, Insup [1 ,2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Seoul Tech, Dept Chem & Biomol Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Seoul Tech, Convergence Inst Biomed Engn & Biomat, 232 Gongneung Ro, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Click chemistry; Hydrogels; 3D bioprinting; Tissue engineering; Regenerative medicine; AZIDE-ALKYNE CYCLOADDITION; HYALURONIC-ACID HYDROGELS; MICHAEL ADDITION-REACTIONS; SELF-HEALING HYDROGEL; CROSS-LINKING; COPPER-FREE; POLY(ETHYLENE GLYCOL); PEG HYDROGELS; DELIVERY; DIFFERENTIATION;
D O I
10.1007/s13770-018-0152-8
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BACKGROUND: The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS: In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS: The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION: Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [41] 3D bioprinting for tissue engineering: Stem cells in hydrogels
    Mehrban, Nazia
    Teoh, Gui Zhen
    Birchall, Martin Anthony
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2016, 2 (01): : 6 - 19
  • [42] Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine
    Saini, Gia
    Segaran, Nicole
    Mayer, Joseph L.
    Saini, Aman
    Albadawi, Hassan
    Oklu, Rahmi
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [43] Injectable hydrogels for tendon and ligament tissue engineering
    Liu, Richun
    Zhang, Shichen
    Chen, Xiao
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (09) : 1333 - 1348
  • [44] Photopolymerizable hydrogels for tissue engineering applications
    Nguyen, KT
    West, JL
    BIOMATERIALS, 2002, 23 (22) : 4307 - 4314
  • [45] Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications
    Garcia-Astrain, Clara
    Averous, Luc
    CARBOHYDRATE POLYMERS, 2018, 190 : 271 - 280
  • [46] Bioprinting and its applications in tissue engineering and regenerative medicine
    Aljohani, Waeljumah
    Ullah, Muhammad Wajid
    Zhang, Xianglin
    Yang, Guang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 : 261 - 275
  • [47] Tissue Engineering Applications of Three-Dimensional Bioprinting
    Zhang, Xiaoying
    Zhang, Yangde
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2015, 72 (03) : 777 - 782
  • [48] Synchronized Dual Bioprinting of Bioinks and Biomaterial Inks as a Translational Strategy for Cartilage Tissue Engineering
    Campos, Daniela F. Duarte
    Philip, Midhun A.
    Guerzing, Stefanie
    Melcher, Christoph
    Lin, Ying Ying
    Schoeneberg, Jan
    Blaeser, Andreas
    Theek, Benjamin
    Fischer, Horst
    Betsch, Marcel
    3D PRINTING AND ADDITIVE MANUFACTURING, 2019, 6 (02) : 63 - 71
  • [49] Exosome-based bioinks for 3D bioprinting applications in tissue engineering and regenerative medicine
    Wang, Qian
    Liu, Yang
    Zhang, Shuqing
    He, Fan
    Shi, Tong
    Li, Jizong
    Wang, Zhimin
    Jia, Jia
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 110 - 131
  • [50] Furan-chitosan hydrogels based on click chemistry
    Montiel-Herrera, Marcelino
    Gandini, Alessandro
    Goycoolea, Francisco M.
    Jacobsen, Neil E.
    Lizardi-Mendoza, Jaime
    Recillas-Mota, Maricarmen T.
    Argueelles-Monal, Waldo M.
    IRANIAN POLYMER JOURNAL, 2015, 24 (05) : 349 - 357