TURAN'S PROBLEM AND RAMSEY NUMBERS FOR TREES

被引:3
作者
Sun, Zhi-Hong [1 ]
Wang, Lin-Lin [2 ]
Wu, Yi-Li [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Sci, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; tree; Turn's problem;
D O I
10.4064/cm139-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T-n(1) = (V, E-1) and T-n(2) = (V, E-2) be the trees on n vertices with V = {v(0), v (1), ...,v(n-1)}, E-1 = {v(0)v(1),...,v(0)v(n-3), v(n-4)v(n-2), v(n-3)v(n-1)} and E-2 = {v(0)v(1),...,v(0)v(n-3),v(n-3)v(n-2),v(n-3)v(n-1)}. For p >= n >= 5 we obtain explicit formulas for e x (p; T-n(1)) and ex (p; T-n(2)), where ex (p; L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r (G(1); G(2)) be the Ramsey number of the two graphs G(1) and G(2). We also obtain some explicit formulas for r (T-m, T-n(i)), where i is an element of {1; 2} and T-m is a tree on m vertices with Delta(Tm) <= m - 3
引用
收藏
页码:273 / 298
页数:26
相关论文
共 50 条
[21]   Ramsey Numbers of Stripes Versus Trees and Unicyclic GraphsRamsey Numbers of Stripes Versus Trees and Unicyclic GraphsS.-N. Hu, Y.-J. Peng [J].
Si-Nan Hu ;
Yue-Jian Peng .
Journal of the Operations Research Society of China, 2025, 13 (1) :297-312
[22]   The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels [J].
Wang, Longqin .
GRAPHS AND COMBINATORICS, 2022, 38 (05)
[23]   The Ramsey Numbers for Trees of Large Maximum Degree Versus the Wheel Graph W8 [J].
Chng, Zhi Yee ;
Britz, Thomas ;
Tan, Ta Sheng ;
Wong, Kok Bin .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
[24]   The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels [J].
Longqin Wang .
Graphs and Combinatorics, 2022, 38
[25]   COMPLEMENTARY RAMSEY NUMBERS AND RAMSEY GRAPHS [J].
Munemasa, Akihiro ;
Shinohara, Masashi .
JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) :146-153
[26]   Anti-Ramsey numbers for trees in complete multi-partite graphs [J].
Zhang, Meiqiao ;
Dong, Fengming .
DISCRETE MATHEMATICS, 2022, 345 (12)
[27]   All Ramsey numbers for brooms in graphs [J].
Yu, Pei ;
Li, Yusheng .
ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03)
[28]   An upper bound for the ramsey numbers of bistars [J].
Yu P. ;
Li Y. .
Tongji Daxue Xuebao, 3 (469-470 and 490) :469-470and490
[29]   RAMSEY AND GALLAI-RAMSEY NUMBERS FOR FORESTS [J].
Gao, Yujia ;
Ji, Meng ;
Mao, Yaping ;
Wei, Meiqin .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
[30]   On induced Ramsey numbers [J].
Gorgol, I ;
Luczak, T .
DISCRETE MATHEMATICS, 2002, 251 (1-3) :87-96