TURAN'S PROBLEM AND RAMSEY NUMBERS FOR TREES

被引:3
作者
Sun, Zhi-Hong [1 ]
Wang, Lin-Lin [2 ]
Wu, Yi-Li [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Sci, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; tree; Turn's problem;
D O I
10.4064/cm139-2-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T-n(1) = (V, E-1) and T-n(2) = (V, E-2) be the trees on n vertices with V = {v(0), v (1), ...,v(n-1)}, E-1 = {v(0)v(1),...,v(0)v(n-3), v(n-4)v(n-2), v(n-3)v(n-1)} and E-2 = {v(0)v(1),...,v(0)v(n-3),v(n-3)v(n-2),v(n-3)v(n-1)}. For p >= n >= 5 we obtain explicit formulas for e x (p; T-n(1)) and ex (p; T-n(2)), where ex (p; L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r (G(1); G(2)) be the Ramsey number of the two graphs G(1) and G(2). We also obtain some explicit formulas for r (T-m, T-n(i)), where i is an element of {1; 2} and T-m is a tree on m vertices with Delta(Tm) <= m - 3
引用
收藏
页码:273 / 298
页数:26
相关论文
共 50 条
  • [21] Ramsey Numbers of Stripes Versus Trees and Unicyclic GraphsRamsey Numbers of Stripes Versus Trees and Unicyclic GraphsS.-N. Hu, Y.-J. Peng
    Si-Nan Hu
    Yue-Jian Peng
    Journal of the Operations Research Society of China, 2025, 13 (1) : 297 - 312
  • [22] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Wang, Longqin
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [23] The Ramsey Numbers for Trees of Large Maximum Degree Versus the Wheel Graph W8
    Chng, Zhi Yee
    Britz, Thomas
    Tan, Ta Sheng
    Wong, Kok Bin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [24] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Longqin Wang
    Graphs and Combinatorics, 2022, 38
  • [25] COMPLEMENTARY RAMSEY NUMBERS AND RAMSEY GRAPHS
    Munemasa, Akihiro
    Shinohara, Masashi
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 146 - 153
  • [26] Anti-Ramsey numbers for trees in complete multi-partite graphs
    Zhang, Meiqiao
    Dong, Fengming
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [27] An upper bound for the ramsey numbers of bistars
    Yu P.
    Li Y.
    Tongji Daxue Xuebao, 3 (469-470 and 490): : 469 - 470and490
  • [28] All Ramsey numbers for brooms in graphs
    Yu, Pei
    Li, Yusheng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03)
  • [29] RAMSEY AND GALLAI-RAMSEY NUMBERS FOR FORESTS
    Gao, Yujia
    Ji, Meng
    Mao, Yaping
    Wei, Meiqin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [30] On Ramsey numbers of fans
    Lin, Qizhong
    Li, Yusheng
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 191 - 194