Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations

被引:0
作者
Huang, Pengzhan [1 ]
Ma, Xiaoling [1 ]
Zhang, Tong [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2016年 / 59卷 / 02期
关键词
Superconvergence; Navier-Stokes equations; L-2-projection; Nonconforming finite element; inf-sup condition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Superconvergence results are established for a nonconforming finite element approximation of the stationary Navier-Stokes equations by a L-2-projection method. This nonconforming finite element method adopts the Crouzeix-Raviart element for the velocity and the continuous piecewise linear element for the pressure. The current paper complements the work of Li and Chen (2008) [6], which presents this pair of mixed finite element method for the Stokes equations. Numerical results are shown to support the developed theory analysis.
引用
收藏
页码:159 / 174
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 2000, J. Math. Study
[2]   A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations [J].
Cai, ZQ ;
Douglas, J ;
Ye, X .
CALCOLO, 1999, 36 (04) :215-232
[3]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[4]   Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations [J].
He, Yinnian ;
Li, Jian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (15-16) :1351-1359
[5]   A nonconforming finite element method for the Stokes equations using the Crouzeix-Raviart element for the velocity and the standard linear element for the pressure [J].
Lamichhane, Bishnu P. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 74 (03) :222-228
[6]   A new local stabilized nonconforming finite element method for the Stokes equations [J].
Li, Jian ;
Chen, Zhangxin .
COMPUTING, 2008, 82 (2-3) :157-170
[7]   Superconvergence of discontinuous Galerkin finite element method for the stationary Navier-Stokes equations [J].
Li, Jian ;
He, Yinnian .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) :421-436
[8]  
Li J, 2009, INT J NUMER ANAL MOD, V6, P711
[9]  
Taylor C., 1973, Computers & Fluids, V1, P73, DOI 10.1016/0045-7930(73)90027-3
[10]   Superconvergence of finite element approximations for the Stokes problem by projection methods [J].
Wang, JP ;
Ye, X .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :1001-1013