Substance-P Inhibits Cardiac Microvascular Endothelial Dysfunction Caused by High Glucose-Induced Oxidative Stress

被引:12
作者
Kim, Do Young [1 ]
Piao, Jiyuan [2 ,3 ]
Hong, Hyun Sook [1 ,4 ]
机构
[1] Kyung Hee Univ, Grad Sch, Dept Biomed Sci & Technol, Seoul 02447, South Korea
[2] Kyung Hee Univ, Dept Genet Engn, Coll Life Sci, Yongin 17104, South Korea
[3] Kyung Hee Univ, Grad Sch Biotechnol, Yongin 17104, South Korea
[4] Kyung Hee Univ, East West Med Res Inst, Seoul 02447, South Korea
关键词
hyperglycemia; oxidative stress; substance-P; cardiac microvascular endothelial cells; NF-KAPPA-B; INJURY; CELLS; ANGIOGENESIS; INFLAMMATION; ACTIVATION;
D O I
10.3390/antiox10071084
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetes is characterized by high glucose (HG) levels in the blood circulation, leading to exposure of the vascular endothelium to HG conditions. Hyperglycemia causes oxidative stress via excessive reactive oxygen species (ROS) production in the endothelium, which leads to cellular dysfunction and the development of diabetic vascular diseases. Substance-P (SP) is an endogenous peptide involved in cell proliferation and migration by activating survival-related signaling pathways. In this study, we evaluated the role of SP in cardiac microvascular endothelial cells (CMECs) in HG-induced oxidative stress. CMECs were treated with diverse concentrations of glucose, and then the optimal dose was determined. Treatment of CMECs with HG reduced their viability and induced excessive ROS secretion, inactivation of PI3/Akt signaling, and loss of vasculature-forming ability in vitro. Notably, HG treatment altered the cytokine profile of CMECs. However, SP treatment inhibited the HG-mediated aggravation of CMECs by restoring viability, free radical balance, and paracrine potential. SP-treated CMECs retained the capacity to form compact and long stretching-tube structures. Collectively, our data provide evidence that SP treatment can block endothelial dysfunction in hyperglycemia and suggest the possibility of using SP for treating diabetic complications as an antioxidant.
引用
收藏
页数:12
相关论文
共 40 条
[1]  
Baek SM, 2016, MOL VIS, V22, P1015
[2]   Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus [J].
Beckman, JA ;
Goldfine, AB ;
Gordon, MB ;
Garrett, LA ;
Keaney, JF ;
Creager, MA .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2003, 285 (06) :H2392-H2398
[3]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[4]   Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues [J].
Burgos-Moron, Estefania ;
Abad-Jimenez, Zaida ;
Martinez de Maranon, Aranzazu ;
Iannantuoni, Francesca ;
Escribano-Lopez, Irene ;
Lopez-Domenech, Sandra ;
Salom, Christian ;
Jover, Ana ;
Mora, Vicente ;
Roldan, Ildefonso ;
Sola, Eva ;
Rocha, Milagros ;
Victor, Victor M. .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (09)
[5]   Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats [J].
Carrillo-Sepulveda, Maria Alicia ;
Spitler, Kathryn ;
Pandey, Deepesh ;
Berkowitz, Dan E. ;
Matsumoto, Takayuki .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2015, 93 (12) :1341-1354
[6]  
Chawla Aastha, 2016, Indian J Endocrinol Metab, V20, P546, DOI 10.4103/2230-8210.183480
[7]   The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex [J].
DeFea, KA ;
Vaughn, ZD ;
O'Bryan, EM ;
Nishijima, D ;
Déry, O ;
Bunnett, NW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :11086-11091
[8]   Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation [J].
Douglas, Steven D. ;
Leeman, Susan E. .
YEAR IN IMMUNOLOGY, 2011, 1217 :83-95
[9]   Endothelial dysfunction [J].
Endemann, DH ;
Schiffrin, EL .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2004, 15 (08) :1983-1992
[10]   Endothelial dysfunction:: a multifaceted disorder [J].
Feletou, Michel ;
Vanhoutte, Paul M. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 291 (03) :H985-H1002