State of Charge Estimation of Battery Energy Storage Systems Based on Adaptive Unscented Kalman Filter With a Noise Statistics Estimator

被引:135
|
作者
Peng, Simin [1 ,2 ]
Chen, Chong [1 ]
Shi, Hongbing [3 ]
Yao, Zhilei [1 ]
机构
[1] Yancheng Inst Technol, Sch Elect Engn, Yancheng 224051, Peoples R China
[2] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD 20740 USA
[3] State Grid Yancheng Power Supply Co, Yancheng 224005, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金;
关键词
Adaptive unscented Kalman filter; battery energy storage systems; noise statistics estimator; state of charge; LITHIUM-ION BATTERIES; MULTICELL BATTERY; MODEL; VEHICLES; SERIES; SOC;
D O I
10.1109/ACCESS.2017.2725301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since the noise statistics of large-scale battery energy storage systems (BESSs) are often unknown or inaccurate in actual applications, the estimation precision of state of charge (SOC) of BESSs using extended Kalman filter (EKF) or unscented Kalman filter (UKF) is usually inaccurate or even divergent. To resolve this problem, a method based on adaptive UKF (AUKF) with a noise statistics estimator is proposed to estimate accurately SOC of BESSs. The noise statistics estimator based on the modified Sage-Husa maximum posterior is aimed to estimate adaptively the mean and error covariance of measurement and system process noises online for the AUKF when the prior noise statistics are unknown or inaccurate. The accuracy and adaptation of the proposed method is validated by the comparison with the UKF and EKF under different real-time conditions. The comparison shows that the proposed method can achieve better SOC estimation accuracy when the noise statistics of BESSs are unknown or inaccurate.
引用
收藏
页码:13202 / 13212
页数:11
相关论文
共 50 条
  • [31] A novel battery state estimation model based on unscented Kalman filter
    Jiabo Li
    Min Ye
    Kangping Gao
    Shengjie Jiao
    Xinxin Xu
    Ionics, 2021, 27 : 2673 - 2683
  • [32] Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery
    Zhang, Weige
    Shi, Wei
    Ma, Zeyu
    JOURNAL OF POWER SOURCES, 2015, 289 : 50 - 62
  • [33] State of charge estimation for lithium-ion battery based on adaptive extended Kalman filter with improved residual covariance matrix estimator
    Zhang, Xugang
    Duan, Linchao
    Gong, Qingshan
    Wang, Yan
    Song, Huawei
    JOURNAL OF POWER SOURCES, 2024, 589
  • [34] State of Charge Estimation of the Lithium-Ion Power Battery Based on a Multi-Time-Scale Improved Adaptive Unscented Kalman Filter
    Wu, Muyao
    Wang, Li
    Wang, Yuqing
    Wu, Ji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [35] Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries
    Havangi, Ramazan
    ELECTRICAL ENGINEERING, 2022, 104 (02) : 1001 - 1017
  • [36] Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries
    Ramazan Havangi
    Electrical Engineering, 2022, 104 : 1001 - 1017
  • [37] A normal-gamma-based adaptive dual unscented Kalman filter for battery parameters and state-of-charge estimation with heavy-tailed measurement noise
    Hou, Jing
    Yang, Yan
    Gao, Tian
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (05) : 3510 - 3525
  • [38] Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model
    Cai, Ming
    Chen, Weijie
    Tan, Xiaojun
    ENERGIES, 2017, 10 (10):
  • [39] A Novel State Estimation Approach Based on Adaptive Unscented Kalman Filter for Electric Vehicles
    Li, Jiabo
    Ye, Min
    Jiao, Shengjie
    Meng, Wei
    Xu, Xinxin
    IEEE ACCESS, 2020, 8 (08) : 185629 - 185637
  • [40] State of charge and model parameters estimation of liquid metal batteries based on adaptive unscented Kalman filter
    Liu, Guoan
    Xu, Cheng
    Jiang, Kai
    Wang, Kangli
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4477 - 4482