Torsion-freeness and non-singularity over right p.p.-rings

被引:12
作者
Albrecht, U [1 ]
Dauns, J
Fuchs, L
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
D O I
10.1016/j.jalgebra.2004.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A right R-module M is non-singular if xI not equal 0 for all non-zero x is an element of M and all essential right ideals I of R. The module M is torsion-free if Tor(1)(R)(M, R/Rr) = 0 for all r is an element of R. This paper shows that, for a ring R, the classes of torsion-free and non-singular right R-modules coincide if and only if R is a right Utumi-p.p.-ring with no infinite set of orthogonal idempotents. Several examples and applications of this result are presented. Special emphasis is given to the case where the maximal right ring of quotients of R is a perfect left localization of R. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 119
页数:22
相关论文
共 11 条
[1]  
ALBRECHT U, 1996, REND SEM MAT UNIV P, V95, P175
[2]  
Anderson Frank W., 1992, GRAD TEXTS MATH, V13
[3]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[4]  
CHATTERS AW, 1980, PITMAN ADV PUBL, V44
[5]   TORSION-FREENESS FOR RINGS WITH ZERO-DIVISORS [J].
Dauns, John ;
Fuchs, Laszlo .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (03) :221-237
[6]  
DUNG N. V., 1994, EXTENDING MODULES
[7]  
Goodearl K.R., 1976, Ring theory: Nonsingular rings and modules
[8]  
Hattori A., 1960, NAGOYA MATH J, V17, P147
[9]   TORSION-FREE AND DIVISIBLE MODULES OVER NON-INTEGRAL-DOMAINS [J].
LEVY, L .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (01) :132-&
[10]  
Rotman J.J., 1979, PURE APPL MATH, V85