Use of isoelectric point and pH to evaluate the synthesis of a nanotubular aluminosilicate

被引:37
作者
Arancibia-Miranda, Nicolas [1 ,2 ]
Escudey, Mauricio [2 ,3 ]
Molina, Mauricio [4 ]
Teresa Garcia-Gonzalez, Maria [5 ]
机构
[1] Univ La Frontera, Dept Ciencias Quim, Temuco, Chile
[2] CEDENNA, Ctr Dev Nanosci & Nanotechnol, Santiago 9170124, Chile
[3] Univ Santiago Chile, Fac Quim & Biol, Santiago, Chile
[4] Univ Tecn Federico Santa Maria, Dept Ind, Santiago 6400, Chile
[5] CSIC, Inst Ciencias Agr, Ctr Ciencias Medioambientales, E-28006 Madrid, Spain
关键词
Imogolite; Isoelectric point; Nanotubular aluminosilicate; Electrophoretic characterization; SURFACE-CHARGE CHARACTERISTICS; AMORPHOUS ALUMINOSILICATES; COMPLEXATION MODELS; IMOGOLITE; ADSORPTION; ALLOPHANE; SILICATE; MINERALS; UPDATE; GROWTH;
D O I
10.1016/j.jnoncrysol.2011.01.012
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To follow the synthesis of imogolite, transmission electron microscopy is needed. In this paper, the isoelectric point (IEP) and the aging pH are proposed as alternative methods. Two synthetic procedures were used (S-I and S-II), both involving a co-precipitation followed by an aging treatment where the aluminosilicate evolves from proto-imogolite (detected after the co-precipitation step), to imogolite: its formation is reached after 120 h (S-I) or 168 h (S-II) of aging, depending on the co-precipitation method used. In S-I the isoelectric point increases from 7.1 to 10.5, while in S-II it increases from 6.6 to 9.2 during the aging treatment. Additionally, a linear relationship between the IEP and the pH at different aging steps was found. That relationship may be used to follow the process of synthesis by simply measuring the pH, becoming an alternative to more complex methods. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1750 / 1756
页数:7
相关论文
共 46 条
  • [1] GAS VAPOR ADSORPTION IN IMOGOLITE - A MICROPOROUS TUBULAR ALUMINOSILICATE
    ACKERMAN, WC
    SMITH, DM
    HULING, JC
    KIM, YW
    BAILEY, JK
    BRINKER, CJ
    [J]. LANGMUIR, 1993, 9 (04) : 1051 - 1057
  • [2] Stirred Bead Mill Grinding of Gibbsite: Surface and Morphological Changes
    Alex, T. C.
    Kumar, Rakesh
    Roy, S. K.
    Mehrotra, S. P.
    [J]. ADVANCED POWDER TECHNOLOGY, 2008, 19 (05) : 483 - 491
  • [3] Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models
    Arai, Yuji
    McBeath, M.
    Bargar, J. R.
    Joye, J.
    Davis, J. A.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (10) : 2492 - 2509
  • [4] THE SYNTHESIS AND CHARACTERIZATION OF IMOGOLITE
    BARRETT, SM
    BUDD, PM
    PRICE, C
    [J]. EUROPEAN POLYMER JOURNAL, 1991, 27 (07) : 609 - 612
  • [5] Properties of surface-modified colloidal particles
    Breiner, JM
    Anderson, MA
    Tom, HWK
    Graham, RC
    [J]. CLAYS AND CLAY MINERALS, 2006, 54 (01) : 12 - 24
  • [6] CRADWICK CPG, 1972, NATURE-PHYS SCI, V240, P187
  • [7] Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors
    Denaix, L
    Lamy, I
    Bottero, JY
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1999, 158 (03) : 315 - 325
  • [8] ESCUDEY M, 1993, BOL SOC CHIL QUIM, V38, P63
  • [9] ESCUDEY M, 1982, COLLOID INTERFACE SC, V93, P78
  • [10] SYNTHETIC IMOGOLITE - PROPERTIES, SYNTHESIS, AND POSSIBLE APPLICATIONS
    FARMER, VC
    ADAMS, MJ
    FRASER, AR
    PALMIERI, F
    [J]. CLAY MINERALS, 1983, 18 (04) : 459 - 472