Industrializing AI-powered drug discovery: lessons learned from the Patrimony computing platform

被引:8
作者
Guedj, Mickael [1 ]
Swindle, Jack [2 ]
Hamon, Antoine [2 ]
Hubert, Sandra [1 ]
Desvaux, Emiko [1 ]
Laplume, Jessica [1 ]
Xuereb, Laura [1 ]
Lefebvre, Celine [1 ]
Haudry, Yannick [1 ]
Gabarroca, Christine [1 ]
Aussy, Audrey [1 ]
Laigle, Laurence [1 ]
Dupin-Roger, Isabelle [1 ]
Moingeon, Philippe [1 ]
机构
[1] Servier, Res & Dev, Suresnes, France
[2] Res & Dev, Lincoln, Boulogne, France
关键词
Drug discovery; target identification; data integration; artificial intelligence; multi-omics; computing platform; Computational Precision Medicine; DEVELOPMENT PRODUCTIVITY; CONNECTIVITY MAP; DATABASE; GENE; EXPRESSION; KNOWLEDGEBASE; INFORMATION; INFERENCE; MEDICINE; ONTOLOGY;
D O I
10.1080/17460441.2022.2095368
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction As a mid-size international pharmaceutical company, we initiated 4 years ago the launch of a dedicated high-throughput computing platform supporting drug discovery. The platform named 'Patrimony' was built up on the initial predicate to capitalize on our proprietary data while leveraging public data sources in order to foster a Computational Precision Medicine approach with the power of artificial intelligence. Areas covered Specifically, Patrimony is designed to identify novel therapeutic target candidates. With several successful use cases in immuno-inflammatory diseases, and current ongoing extension to applications to oncology and neurology, we document how this industrial computational platform has had a transformational impact on our R&D, making it more competitive, as well time and cost effective through a model-based educated selection of therapeutic targets and drug candidates. Expert opinion We report our achievements, but also our challenges in implementing data access and governance processes, building up hardware and user interfaces, and acculturing scientists to use predictive models to inform decisions.
引用
收藏
页码:815 / 824
页数:10
相关论文
共 86 条
[31]   The Ensembl genome database project [J].
Hubbard, T ;
Barker, D ;
Birney, E ;
Cameron, G ;
Chen, Y ;
Clark, L ;
Cox, T ;
Cuff, J ;
Curwen, V ;
Down, T ;
Durbin, R ;
Eyras, E ;
Gilbert, J ;
Hammond, M ;
Huminiecki, L ;
Kasprzyk, A ;
Lehvaslaiho, H ;
Lijnzaad, P ;
Melsopp, C ;
Mongin, E ;
Pettett, R ;
Pocock, M ;
Potter, S ;
Rust, A ;
Schmidt, E ;
Searle, S ;
Slater, G ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Stupka, E ;
Ureta-Vidal, A ;
Vastrik, I ;
Clamp, M .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :38-41
[32]   Principles of early drug discovery [J].
Hughes, J. P. ;
Rees, S. ;
Kalindjian, S. B. ;
Philpott, K. L. .
BRITISH JOURNAL OF PHARMACOLOGY, 2011, 162 (06) :1239-1249
[33]   AI in small-molecule drug discovery: a coming wave? [J].
Jayatunga, Madura K. P. ;
Xie, Wen ;
Ruder, Ludwig ;
Schulze, Ulrik ;
Meier, Christoph .
NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (03) :174-175
[34]   Literature mining for the biologist: from information retrieval to biological discovery [J].
Jensen, LJ ;
Saric, J ;
Bork, P .
NATURE REVIEWS GENETICS, 2006, 7 (02) :119-129
[35]   Reactome: a knowledgebase of biological pathways [J].
Joshi-Tope, G ;
Gillespie, M ;
Vastrik, I ;
D'Eustachio, P ;
Schmidt, E ;
de Bono, B ;
Jassal, B ;
Gopinath, GR ;
Wu, GR ;
Matthews, L ;
Lewis, S ;
Birney, E ;
Stein, L .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D428-D432
[36]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[37]   Open Targets: a platform for therapeutic target identification and validation [J].
Koscielny, Gautier ;
An, Peter ;
Carvalho-Silva, Denise ;
Cham, Jennifer A. ;
Fumis, Luca ;
Gasparyan, Rippa ;
Hasan, Samiul ;
Karamanis, Nikiforos ;
Maguire, Michael ;
Papa, Eliseo ;
Pierleoni, Andrea ;
Pignatelli, Miguel ;
Platt, Theo ;
Rowland, Francis ;
Wankar, Priyanka ;
Bento, A. Patricia ;
Burdett, Tony ;
Fabregat, Antonio ;
Forbes, Simon ;
Gaulton, Anna ;
Gonzalez, Cristina Yenyxe ;
Hermjakob, Henning ;
Hersey, Anne ;
Jupe, Steven ;
Kafkas, Senay ;
Keays, Maria ;
Leroy, Catherine ;
Lopez, Francisco-Javier ;
Magarinos, Maria Paula ;
Malone, James ;
McEntyre, Johanna ;
Fuentes, Alfonso Munoz-Pomer ;
O'Donovan, Claire ;
Papatheodorou, Irene ;
Parkinson, Helen ;
Palka, Barbara ;
Paschall, Justin ;
Petryszak, Robert ;
Pratanwanich, Naruemon ;
Sarntivijal, Sirarat ;
Saunders, Gary ;
Sidiropoulos, Konstantinos ;
Smith, Thomas ;
Sondka, Zbyslaw ;
Stegle, Oliver ;
Tang, Amy ;
Turner, Edward ;
Vaughan, Brendan ;
Vrousgou, Olga ;
Watkins, Xavier .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D985-D994
[38]   The SIDER database of drugs and side effects [J].
Kuhn, Michael ;
Letunic, Ivica ;
Jensen, Lars Juhl ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1075-D1079
[39]   Innovation - The Connectivity Map: a new tool for biomedical research [J].
Lamb, Justin .
NATURE REVIEWS CANCER, 2007, 7 (01) :54-60
[40]   Network Medicine in Pathobiology [J].
Lee, Laurel Yong-Hwa ;
Loscalzo, Joseph .
AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (07) :1311-1326