A parallel Tseng's splitting method for solving common variational inclusion applied to signal recovery problems

被引:13
作者
Suparatulatorn, Raweerote [1 ,2 ]
Cholamjiak, Watcharaporn [3 ]
Gibali, Aviv [4 ,5 ]
Mouktonglang, Thanasak [1 ,2 ]
机构
[1] Chiang Mai Univ, Adv Res Ctr Computat Simulat, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[3] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[4] ORT Braude Coll, Dept Math, IL-2161002 Karmiel, Israel
[5] Univ Haifa, Ctr Math & Sci Computat, IL-3498838 Haifa, Israel
关键词
Common variational inclusion problem; Inertial proximal algorithm; Tseng's splitting algorithm; Compressed sensing; Communications technology; Information and communication technology; THRESHOLDING ALGORITHM; CONVERGENCE;
D O I
10.1186/s13662-021-03647-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we propose an accelerated algorithm that combines various techniques, such as inertial proximal algorithms, Tseng's splitting algorithm, and more, for solving the common variational inclusion problem in real Hilbert spaces. We establish a strong convergence theorem of the algorithm under standard and suitable assumptions and illustrate the applicability and advantages of the new scheme for signal recovering problem arising in compressed sensing.
引用
收藏
页数:19
相关论文
共 27 条
[1]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications [J].
Cholamjiak, Prasit ;
Dang Van Hieu ;
Cho, Yeol Je .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
[4]   An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces [J].
Cholamjiak, Watcharaporn ;
Cholamjiak, Prasit ;
Suantai, Suthep .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01) :1-17
[5]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[6]   Iterative regularization methods with new stepsize rules for solving variational inclusions [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu ;
Strodiot, Jean Jacques .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) :571-599
[7]   Modified forward-backward splitting method for variational inclusions [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (01) :127-151
[8]   Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings [J].
Dang Van Hieu ;
Le Dung Muu ;
Pham Ky Anh .
NUMERICAL ALGORITHMS, 2016, 73 (01) :197-217
[9]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[10]  
Duchi J, 2009, J MACH LEARN RES, V10, P2899