Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11

被引:37
作者
Kokotos, A. C. [1 ,2 ,3 ]
Peltier, J. [4 ]
Davenport, E. C. [1 ,2 ,3 ]
Trost, M. [4 ]
Cousin, M. A. [1 ,2 ,3 ]
机构
[1] Univ Edinburgh, Ctr Discovery Brain Sci, Edinburgh EH8 9XD, Midlothian, Scotland
[2] Univ Edinburgh, Muir Maxwell Epilepsy Ctr, Edinburgh EH8 9XD, Midlothian, Scotland
[3] Univ Edinburgh, Simons Initiat Developing Brain, Edinburgh EH8 9XD, Midlothian, Scotland
[4] Newcastle Univ, Fac Med Sci, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
endocytosis; neuron; presynapse; vesicle; Rab11; SYNAPTIC VESICLE ENDOCYTOSIS; CENTRAL NERVE-TERMINALS; MEMBRANE RETRIEVAL; HIPPOCAMPAL SYNAPSES; GABA(A) RECEPTORS; EHD PROTEINS; SYNDAPIN-I; ENDOSOMES; TRANSPORT; COMPLEX;
D O I
10.1073/pnas.1809189115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
引用
收藏
页码:E10177 / E10186
页数:10
相关论文
共 87 条
[41]   Role of Rab GTPases in Membrane Traffic and Cell Physiology [J].
Hutagalung, Alex H. ;
Novick, Peter J. .
PHYSIOLOGICAL REVIEWS, 2011, 91 (01) :119-149
[42]   Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila [J].
Inoshita, Tsuyoshi ;
Arano, Taku ;
Hosaka, Yuka ;
Meng, Hongrui ;
Umezaki, Yujiro ;
Kosugi, Sakiko ;
Morimoto, Takako ;
Koike, Masato ;
Chang, Hui-Yun ;
Imai, Yuzuru ;
Hattori, Nobutaka .
HUMAN MOLECULAR GENETICS, 2017, 26 (15) :2933-2948
[43]   Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function [J].
Jang, SoRi ;
Nelson, Jessica C. ;
Bend, Eric G. ;
Rodriguez-Laureano, Lucelenie ;
Tueros, Felipe G. ;
Cartagenova, Luis ;
Underwood, Katherine ;
Jorgensen, Erik M. ;
Colon-Ramos, Daniel A. .
NEURON, 2016, 90 (02) :278-291
[44]   Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? [J].
Johnson, Kari A. ;
Lovinger, David M. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2016, 10
[45]   Visualizing presynaptic function [J].
Kavalali, Ege T. ;
Jorgensen, Erik M. .
NATURE NEUROSCIENCE, 2014, 17 (01) :10-16
[46]   Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I [J].
Koch, Dennis ;
Spiwoks-Becker, Isabella ;
Sabanov, Victor ;
Sinning, Anne ;
Dugladze, Tamar ;
Stellmacher, Anne ;
Ahuja, Rashmi ;
Grimm, Julia ;
Schueler, Susann ;
Mueller, Anke ;
Angenstein, Frank ;
Ahmed, Tariq ;
Diesler, Alexander ;
Moser, Markus ;
Dieck, Susanne Tom ;
Spessert, Rainer ;
Boeckers, Tobias Maria ;
Faessler, Reinhard ;
Huebner, Christian Andreas ;
Balschun, Detlef ;
Gloveli, Tengis ;
Kessels, Michael Manfred ;
Qualmann, Britta .
EMBO JOURNAL, 2011, 30 (24) :4955-4969
[47]   Synaptic Vesicle Generation from Central Nerve Terminal Endosomes [J].
Kokotos, Alexandros C. ;
Cousin, Michael A. .
TRAFFIC, 2015, 16 (03) :229-240
[48]   Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation [J].
Kononenko, Natalia L. ;
Haucke, Volker .
NEURON, 2015, 85 (03) :484-496
[49]   Clathrin/AP-2 Mediate Synaptic Vesicle Reformation from Endosome-like Vacuoles but Are Not Essential for Membrane Retrieval at Central Synapses [J].
Kononenko, Natalia L. ;
Puchkov, Dmytro ;
Classen, Gala A. ;
Walter, Alexander M. ;
Pechstein, Arndt ;
Sawade, Linda ;
Kaempf, Natalie ;
Trimbuch, Thorsten ;
Lorenz, Dorothea ;
Rosenmund, Christian ;
Maritzen, Tanja ;
Haucke, Volker .
NEURON, 2014, 82 (05) :981-988
[50]   AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis [J].
Kratzke, Manuel ;
Candiello, Ermes ;
Schmidt, Bernhard ;
Jahn, Olaf ;
Schu, Peter .
MOLECULAR NEUROBIOLOGY, 2015, 52 (01) :142-161