Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11

被引:35
作者
Kokotos, A. C. [1 ,2 ,3 ]
Peltier, J. [4 ]
Davenport, E. C. [1 ,2 ,3 ]
Trost, M. [4 ]
Cousin, M. A. [1 ,2 ,3 ]
机构
[1] Univ Edinburgh, Ctr Discovery Brain Sci, Edinburgh EH8 9XD, Midlothian, Scotland
[2] Univ Edinburgh, Muir Maxwell Epilepsy Ctr, Edinburgh EH8 9XD, Midlothian, Scotland
[3] Univ Edinburgh, Simons Initiat Developing Brain, Edinburgh EH8 9XD, Midlothian, Scotland
[4] Newcastle Univ, Fac Med Sci, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
endocytosis; neuron; presynapse; vesicle; Rab11; SYNAPTIC VESICLE ENDOCYTOSIS; CENTRAL NERVE-TERMINALS; MEMBRANE RETRIEVAL; HIPPOCAMPAL SYNAPSES; GABA(A) RECEPTORS; EHD PROTEINS; SYNDAPIN-I; ENDOSOMES; TRANSPORT; COMPLEX;
D O I
10.1073/pnas.1809189115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
引用
收藏
页码:E10177 / E10186
页数:10
相关论文
共 87 条
  • [1] Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity
    Arikkath, Jyothi
    Reichardt, Louis F.
    [J]. TRENDS IN NEUROSCIENCES, 2008, 31 (09) : 487 - 494
  • [2] The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals
    Atluri, PP
    Ryan, TA
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (08) : 2313 - 2320
  • [3] Presynaptic long-term depression mediated by Gi/o-coupled receptors
    Atwood, Brady K.
    Lovinger, David M.
    Mathur, Brian N.
    [J]. TRENDS IN NEUROSCIENCES, 2014, 37 (11) : 663 - 673
  • [4] Role of β-catenin in synaptic vesicle localization and presynaptic assembly
    Bamji, SX
    Shimazu, K
    Kimes, N
    Huelsken, J
    Birchmeier, W
    Lu, B
    Reichardt, LF
    [J]. NEURON, 2003, 40 (04) : 719 - 731
  • [5] A fluorescence-based in vitro assay for investigating early endosome dynamics
    Barysch, Sina V.
    Jahn, Reinhard
    Rizzoli, Silvio O.
    [J]. NATURE PROTOCOLS, 2010, 5 (06) : 1127 - 1137
  • [6] 14-3-3 proteins in the nervous system
    Berg, D
    Holzmann, C
    Riess, O
    [J]. NATURE REVIEWS NEUROSCIENCE, 2003, 4 (09) : 752 - 762
  • [7] Flotillins in intercellular adhesion - from cellular physiology to human diseases
    Bodin, Stephane
    Planchon, Damien
    Morris, Eduardo Rios
    Comunale, Franck
    Gauthier-Rouviere, Cecile
    [J]. JOURNAL OF CELL SCIENCE, 2014, 127 (24) : 5139 - 5147
  • [8] EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling
    Braun, A
    Pinyol, R
    Dahlhaus, R
    Koch, D
    Fonarev, P
    Grant, BD
    Kessels, MM
    Qualmann, B
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (08) : 3642 - 3658
  • [9] Cadherin-catenin adhesion complexes at the synapse
    Brigidi, G. Stefano
    Bamji, Shernaz X.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2011, 21 (02) : 208 - 214
  • [10] THE CELLULAR NEUROBIOLOGY OF NEURONAL DEVELOPMENT - THE CEREBELLAR GRANULE CELL
    BURGOYNE, RD
    CAMBRAYDEAKIN, MA
    [J]. BRAIN RESEARCH REVIEWS, 1988, 13 (01) : 77 - 101